学位论文详细信息
Generalized Foulkes' Conjecture and tableaux construction
symmetric group;wreath product
Vessenes, Rebecca Angel ; Wales, David B.
University:California Institute of Technology
Department:Physics, Mathematics and Astronomy
关键词: symmetric group;    wreath product;   
Others  :  https://thesis.library.caltech.edu/1870/1/AppendixA.pdf
美国|英语
来源: Caltech THESIS
PDF
【 摘 要 】

Foulkes conjectured thatfor n=ab and a <= b, every irreducible module occurring as a constituent in $1_{Sym{b}wrSym{a}}^{Sym{n}}$ occurs with greater or equal multiplicity in $1_{Sym{a}wrSym{b}}^{Sym{n}}$. We generalize part of this to say those irreducibles also occur in $1_{Sym{d}wrSym{c}}^{Sym{n}}$, where cd=n and c,d >= a.We prove the generalized conjecture for a=2 and a=3, by explicitly constructing the corresponding tableaux. We also prove the multiplicity constraint for certain cases. For these proofs we develop a theory of construction conditions for tableaux giving rise to $Sym{b}wrSym{a}$ modules and in doing so, completely classify all such tableaux for a=2 and a=3.

【 预 览 】
附件列表
Files Size Format View
Generalized Foulkes' Conjecture and tableaux construction 123KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:4次