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Appendix A

Association between Tableaux
Spaces and Irreducibles

Let n = ab and H = ;1 S,. Recall that WM = {T|T a A-tableau filled with 1 to a,
each b times}. We will explicitly show why the multiplicity of x, in 1}9{” equals the
dimension of C{q,|T € W},

View H as a subgroup of §,,, where H acts on
L,2,...bb+1,...,20...[(a— )b+ 1,...,ab

by &, on each block and by S, permuting the blocks. The elements of H are the form
(71, ...7q,0) with m; €S, 0 € S,. Now S, x S, acts on Wh* with S, acting on the
numbers 1 to a and S,, acting on the positions (corresponding to labelling across the
rows).

Let K = {(c7", (71, ...7,0))|m € Sp, 0 € S} So K < S, xH <8, xS,. Let T
be the A-tableau filled across the rows with b 1’s, then b 2’s, etc. Then S, X §,, acting
on T gives WM and K fixes T. Specifically, Stabs,xs,(T) = K. Hence as S, X S,,

/\,a ~ Sa,XSn — Saxsn
modules, W o~ 1 hon = 1527,

Proposition A.0.2. WM ~ > uha ws, (1)@ (or (1)) where s, (1) is the irreducible
of §, indexed by p and g (i) is the irreducible of H/(Sp x ... x &) ~ S, indexed

by .

Proof. Since 1 X (S X ... x &) < K, it is in the kernel of 1. As Sy x ... xS, < H, it
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is in the kernel of 1}9(””]. So we can view 1}§("XH asan Su x H/(Spx ... x8p) ~ S, xS,
module. Let D = {(¢7",0)|c € S,} be the image of K in S, x H/(Sp X ... X Sp).
Hence 1527 ~ 13925 a5 S, x H/(S, % ... x Sy) modules. Thus we can write 157*% =
Y au,Pu @ ¢y, for p, v F a and some a,,, where ¢ is the corresponding irreducible of
S,

By Frobenius reciprocity a,, = (¢, ® ¢y, 1950y = (0 ® ¢ulp,1p)p. Now ¢, ®
$ulp = Gudy. S0 (6 @ dulp, 10)D = 1B Lses, bu(0) b (o) = ||‘i§|| (P> @v)s,- Using

lifu=v

row orthogonality and |S,| = |D|, we have a,, =
0 otherwise

So 194%%s = > pra P @ G If we lift back to the original module 1520 we
have 150" = > 05, (1) ® du(p) where ¢s, (1) is the irreducible of S, indexed by
w and ¢g(u) is the irreducible of H/(Sy X -+- X &) ~ S, indexed by u. Since

1%X3n _ (1%XH)SQ><S,L we get
15590 = (37 5, (1) ® 6 (1)) = 3 65, (1) © (D12 (1))
P I

O

By this proposition we have W@ ~ Y e P8, (1) ® (m (1) as S, x S,, modules.
Consider the submodule on which S, is trivial, that is, p = (a). This corresponds
to 1s, @ (15)%". If 1‘?{" = > . MuXy, this module corresponds to ) . 1s, ® m,x,.
Now ex = > cp. D rec, €(T)oT is an idempotent of S, on A-tableau T'. So the action
of ey on ) 1 ®my,y, is the same as the action of g\ = > s 7ey on WMe  Then
qr - WM ~ my(ey - 8) as S, modules, as ey - 8 = 0 for X # v. Now 8" is is a
cyclic S,-module generated by e, (T'). (Correspondingly, the semi-standard tableaux
which span 8* are equivalent under the action of S,.) Therefore dim(ex8*) = 1 and

dim(g\W*) = my. Hence {q.|T € W}, spans a module of dimension my, the

multiplicity of x, in 1§:25a. This proof is due to Wales, [22].
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