期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:399 |
Nilpotent and polycyclic-by-finite maximal subgroups of skew linear groups | |
Article | |
Ramezan-Nassab, Mojtaba1  Kiani, Dariush1  | |
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Math & Comp Sci, Tehran, Iran | |
关键词: Division ring; Maximal subgroup; Nilpotent group; Polycyclic-by-finite group; | |
DOI : 10.1016/j.jalgebra.2013.09.042 | |
来源: Elsevier | |
【 摘 要 】
Let D be an infinite division ring, n a natural number and N a subnormal subgroup of GL(n)(D) such that n = 1 or the center of D contains at least five elements. This paper contains two main results. In the first one we prove that each nilpotent maximal subgroup of N is abelian; this generalizes the result in Ebrahimian (2004) [3] (which asserts that each maximal subgroup of GL(n)(D) is abelian) and a result in Ramezan-Nassab and Kiani (2013) [12]. In the second one we show that a maximal subgroup of GLn(D) cannot be polycyclic-by-finite. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2013_09_042.pdf | 208KB | download |