期刊论文详细信息
JOURNAL OF ALGEBRA 卷:399
Nilpotent and polycyclic-by-finite maximal subgroups of skew linear groups
Article
Ramezan-Nassab, Mojtaba1  Kiani, Dariush1 
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Math & Comp Sci, Tehran, Iran
关键词: Division ring;    Maximal subgroup;    Nilpotent group;    Polycyclic-by-finite group;   
DOI  :  10.1016/j.jalgebra.2013.09.042
来源: Elsevier
PDF
【 摘 要 】

Let D be an infinite division ring, n a natural number and N a subnormal subgroup of GL(n)(D) such that n = 1 or the center of D contains at least five elements. This paper contains two main results. In the first one we prove that each nilpotent maximal subgroup of N is abelian; this generalizes the result in Ebrahimian (2004) [3] (which asserts that each maximal subgroup of GL(n)(D) is abelian) and a result in Ramezan-Nassab and Kiani (2013) [12]. In the second one we show that a maximal subgroup of GLn(D) cannot be polycyclic-by-finite. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2013_09_042.pdf 208KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次