期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:118
On locally primitive Cayley graphs of finite simple groups
Article
Fang, Xingui1,2  Ma, Xuesong3  Wang, Jie1,2 
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Capital Normal Univ, Dept Math, Beijing 100048, Peoples R China
关键词: Finite simple group;    Maximal subgroup;    Cayley graph;    Normal Cayley graph;    Arc-transitive graph;    Locally primitive graph;   
DOI  :  10.1016/j.jcta.2010.10.008
来源: Elsevier
PDF
【 摘 要 】

In this paper we investigate locally primitive Cayley graphs of finite nonabelian simple groups. First, we prove that, for any valency d for which the Weiss conjecture holds (for example, d <= 20 or d is a prime number by Conder, Li and Praeger (2000) [1]), there exists a finite list of groups such that if G is a finite nonabelian simple group not in this list, then every locally primitive Cayley graph of valency d on G is normal. Next we construct an infinite family of p-valent non-normal locally primitive Cayley graph of the alternating group for all prime p >= 5. Finally, we consider locally primitive Cayley graphs of finite simple groups with valency 5 and determine all possible candidates of finite nonabelian simple groups G such that the Cayley graph Cay(G, S) might be non-normal. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2010_10_008.pdf 218KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次