期刊论文详细信息
JOURNAL OF ALGEBRA 卷:572
Cellularity of endomorphism algebras of Young permutation modules
Article
Donkin, Stephen1 
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
关键词: Cellular;    Endomorphism algebra;    Young permutation module;   
DOI  :  10.1016/j.jalgebra.2020.11.022
来源: Elsevier
PDF
【 摘 要 】

Let E be an n-dimensional vector space. Then the symmetric group Sym(n) acts on E by permuting the elements of a basis and hence on the r-fold tensor product E-circle times r. Bowman, Doty and Martin ask, in [1], whether the endomorphism algebra End(sym(n)) (E-circle times r) is cellular. The module E-circle times r is the permutation module for a certain Young Sym(n)-set. We shall show that the endomorphism algebra of the permutation module on an arbitrary Young Sym(n)-set is a cellular algebra. We determine, in terms of the point stabilisers which appear, when the endomorphism algebra is quasi-hereditary. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2020_11_022.pdf 471KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次