JOURNAL OF ALGEBRA | 卷:572 |
Cellularity of endomorphism algebras of Young permutation modules | |
Article | |
Donkin, Stephen1  | |
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England | |
关键词: Cellular; Endomorphism algebra; Young permutation module; | |
DOI : 10.1016/j.jalgebra.2020.11.022 | |
来源: Elsevier | |
【 摘 要 】
Let E be an n-dimensional vector space. Then the symmetric group Sym(n) acts on E by permuting the elements of a basis and hence on the r-fold tensor product E-circle times r. Bowman, Doty and Martin ask, in [1], whether the endomorphism algebra End(sym(n)) (E-circle times r) is cellular. The module E-circle times r is the permutation module for a certain Young Sym(n)-set. We shall show that the endomorphism algebra of the permutation module on an arbitrary Young Sym(n)-set is a cellular algebra. We determine, in terms of the point stabilisers which appear, when the endomorphism algebra is quasi-hereditary. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2020_11_022.pdf | 471KB | download |