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Let E be an n-dimensional vector space. Then the symmetric 
group Sym(n) acts on E by permuting the elements of a 
basis and hence on the r-fold tensor product E⊗r . Bowman, 
Doty and Martin ask, in [1], whether the endomorphism 
algebra EndSym(n)(E⊗r) is cellular. The module E⊗r is the 
permutation module for a certain Young Sym(n)-set. We 
shall show that the endomorphism algebra of the permutation 
module on an arbitrary Young Sym(n)-set is a cellular algebra. 
We determine, in terms of the point stabilisers which appear, 
when the endomorphism algebra is quasi-hereditary.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We fix a positive integer n. The symmetric group of degree n is denoted Sym(n). For 
a partition λ = (λ1, λ2, . . .) of n we have the Young subgroup, i.e., the group Sym(λ) =
Sym(λ1) ×Sym(λ2) ×· · · , regarded as a subgroup of Sym(n) in the usual way. By a Young 
Sym(n)-set we mean a finite Sym(n)-set such that each point stabiliser is conjugate to 
a Young subgroup. Let R be a commutative ring. Our interest is in the endomorphism 
algebra EndSym(n)(RΩ) of the permutation module RΩ on a Young Sym(n)-set Ω. We 
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shall show that EndSym(n)(Z Ω) has a cellular structure, Theorem 6.3, hence by base 
change so has EndSym(n)(RΩ), for an arbitrary commutative ring R.

Taking the base ring now to be a field k of positive characteristic, we give a criterion for 
EndSym(n)(kΩ) to be a quasi-hereditary algebra, in terms of the set of partitions λ of n for 
which Sym(λ) occurs as a point stabiliser, and the characteristic p of k, see Theorem 6.5. 
This is applied to the case Ω = I(n, r), the set of maps from {1, . . . , r} to {1, . . . , n}, for a 
positive integer r, with Sym(n) acting by composition of maps. The permutation module 
kI(n, r) may be regarded as the rth tensor power E⊗r of an n-dimensional vector space 
E, and we thus determine when EndSym(n)(E⊗r) is quasi-hereditary, see Proposition 7.3.

We conclude by addressing two points raised by the referee, to whom I am most 
grateful. The first point is to relate quasihereditary endomorphism algebras of Young 
permutation modules to generalised Schur algebras and the second is to note that the 
decomposition numbers for the endomorphism algebra of an arbitrary Young permuta-
tion module are decomposition numbers for general linear groups.

Our procedure is to analyse the endomorphism algebra of a Young permutation mod-
ule in the spirit of the Schur algebra S(n, r) (which is a special case). Of particular 
importance to us will be the fact that the Schur algebra is quasi-hereditary. There are 
several approaches to this (see e.g. [7, Section A5] and [20]) but for us the most con-
venient is that of Green, [11]. This has the advantage of being a purely combinatorial 
account carried out over an arbitrary commutative base ring. So we regard what fol-
lows as a modest generalisation of some aspects of [11]: we follow Green’s approach and 
notation to a large extent.

2. Preliminaries

We write mod(S) for the category of finitely generated modules over a ring S.
Let G be a finite group and K a field of characteristic 0. Let X be a finitely generated 

KG-module. Suppose that all composition factors of X are absolutely irreducible. Let 
U1, . . . , Ud be a complete set of pairwise non-isomorphic composition factors of X. We 
write X as a direct sum of simple modules X = X1⊕· · ·⊕Xh. For 1 ≤ i ≤ d let mi be the 
number of elements r ∈ {1, . . . , h} such that Xr is isomorphic to Ui. Let S = EndG(X). 
Then S is isomorphic to the product of the matrix algebras Mm1(K), . . . , Mmd

(K). We 
have an exact functor from f : mod(KG) → mod(S), given on objects by f(Z) =
HomSym(n)(Z, X). Moreover we have S = f(X) =

⊕h
r=1 HomG(Xr, X). It follows that 

the modules Li = fUi = HomG(Ui, X), 1 ≤ i ≤ d, form a complete set of pairwise 
non-isomorphic irreducible S-modules.

The situation in positive characteristic is similar, cf. [10, (3.4) Proposition]. Suppose 
now that F is any field which is a splitting field for G. Let Y be a finitely generated 
KG-module in which every indecomposable summand is absolutely indecomposable. Let 
V1, . . . , Ve be a complete set of pairwise non-isomorphic indecomposable summands of Y . 
We write Y as a direct sum of indecomposable modules Y = Y1 ⊕· · ·⊕Yk. For 1 ≤ j ≤ e

let nj be the number of elements r ∈ {1, . . . , k} such that Yr is isomorphic to Vj . Let 
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T = EndG(Y ). Then each Pj = HomG(Vj , Y ) is naturally a T -module and the modules 
P1, . . . , Pe form a complete set of pairwise non-isomorphic projective T -modules. Let Nj

be the head of Pj , 1 ≤ j ≤ e. Then the modules N1, . . . , Ne form a complete set of 
pairwise non-isomorphic irreducible T -modules. The dimension of Nj over F is nj .

We now fix a positive integer n. We write Par(n) for the set of partitions of n. By 
the support ζ(Ω) of a Young Sym(n)-set Ω we mean the set of λ ∈ Par(n) such that 
the Young subgroup Sym(λ) is a point stabiliser. Let R be a commutative ring. For a 
Young Sym(n)-set Ω we write SΩ,R for the endomorphism algebra EndSym(n)(RΩ) of the 
permutation module RΩ. For λ ∈ Par(n) we write M(λ)R for the permutation module 
R Sym(n)/Sym(λ).

We have the usual dominance partial order � on Par(n). Thus, for λ = (λ1, λ2, . . .), μ =
(μ1μ2, . . .) ∈ Par(n), we write λ � μ if λ1 + · · · + λa ≤ μ1 + · · · + μa for all 1 ≤ a ≤ n.

Recall that the Specht modules Sp(λ)Q, λ ∈ Par(n), form a complete set of pairwise 
irreducible QSym(n)-modules. For λ ∈ Par(n) we have M(λ)Q = Sp(λ)Q ⊕ C, where C
is a direct sum of modules of the form Sp(μ) with λ � μ, and moreover every Specht 
module Sp(μ)Q with λ � μ occurs in C (see for example [14, 14.1]).

For a Young Sym(n)-set Ω we define

ζ�(Ω) = {μ ∈ Par(n) |μ � λ for some λ ∈ ζ(Ω)}.

Thus the set of composition factors of QΩ is {Sp(μ)Q | μ ∈ ζ�(Ω)} and, setting 
∇Ω(μ)Q = HomSym(n)(Sp(μ)Q, QΩ), we have the following.

Lemma 2.1. The modules ∇Ω(λ)Q, λ ∈ ζ�(Ω), form a complete set of pairwise non-
isomorphic irreducible SΩ,Q-modules.

Remark 2.2. Since SΩ,Q is a direct sum of matrix algebras over Q it is semisimple, all irre-
ducible modules are absolutely irreducible and dimQ SΩ,Q =

∑
λ∈ζ�(Ω)(dimQ∇Ω(λ)Q)2.

We now let k be a field of characteristic p > 0. For λ ∈ Par(n) we have the Young 
module Y (λ) for kSym(n), labelled by λ, as described in [7, Section 4.4] for example. 
Then we have M(λ)k = Y (λ) ⊕C, where C is a direct sum of Young modules Y (μ), with 
λ � μ, see for example [7, Section 4.4 (1) (v)]. A partition λ = (λ1, λ2, . . .) will be called 
p-restricted (also called column p-regular) if λi − λi+1 < p for all i ≥ 1. A partition λ
has a unique expression

λ =
∑
i≥0

piλ(i)

where each λ(i) is a p-restricted partition. This is called the base p (or p-adic) expansion 
of λ.

We write Λ(n) for the set of all n-tuples of non-negative integers. An expression 
λ =

∑
i≥0 p

iγ(i), with all γ(i) ∈ Λ(n) (but not necessarily restricted) will be called a 
weak p expansion.
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For an n-tuple of non-negative integers γ we write γ for the partition obtained by 
arranging the entries in descending order.

Definition 2.3. For λ, μ ∈ Par(n) we shall say that μ p-dominates λ, and write μ �p λ

(or λ �p μ) if there exists a weak p expansion λ =
∑

i≥0 p
iγ(i), such that μ(i) � γ(i) for 

all i ≥ 0, where μ =
∑

i≥0 p
iμ(i) is the base p expansion of μ.

Note that λ �p μ implies λ � μ.
By [6, Section 3, Remark], for λ, μ ∈ Par(n), the module Y (μ) appears as a component 

of M(λ)k if and only if λ �p μ. For a Young Sym(n)-set Ω we define

ζ�p(Ω) = {μ ∈ Par(n) |μ �p λ for some λ ∈ ζ(Ω)}.

Writing PΩ(μ) = HomSym(n)(Y (μ), kΩ) and writing LΩ(μ) for the head of PΩ(μ), for 
μ ∈ ζ�p(Ω) we have the following.

Lemma 2.4. The modules LΩ(λ), λ ∈ ζ�p(Ω), form a complete set of pairwise non-
isomorphic irreducible SΩ,k-modules.

3. Basic constructions

We fix a positive integer n and a Young Sym(n)-set Ω. Here we assume the base ring 
R is either the ring integers Z or the field of rational numbers Q. We write MΩ,R, or just 
MR for the permutation module RΩ over RSym(n). We also just write M for MΩ,Z. 
We shall sometimes write simply SR for SΩ,R and just S for SZ. We identify S with a 
subring or SQ in the natural way.

Let {Oα | α ∈ ΛΩ} be a complete set of orbits in Ω. For λ ∈ ζ(Ω) we pick α(λ) ∈ ΛΩ
such that Sym(λ) is a point stabiliser of some element of Oα(λ).

We put Mα,R = ROα, and sometimes write just Mα for Mα,Z, for α ∈ ΛΩ. For 
β ∈ ΛΩ we define the element ξβ of SR to be the projection onto Mβ,R coming from 
the decomposition MR =

⊕
α∈ΛΩ

Mα,R. Then each ξα is idempotent and we have the 
orthogonal decomposition:

1S =
∑
α∈ΛΩ

ξα.

For a left SR-module V and β ∈ ΛΩ we have the β weight space βV = ξβV and the 
weight space decomposition

V =
⊕
α∈ΛΩ

αV.

For λ ∈ Par(n) we define
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λV =
{
ξα(λ)V, if λ ∈ ζ(Ω);
0, otherwise.

Similar remarks apply to weight spaces of right SR-modules.

Lemma 3.1. Let λ ∈ ζ�(Ω). Then we have:
(i) dimQ

λ∇Ω(λ)Q = 1; and
(ii) if μ ∈ Par(n) and μ∇Ω(λ)Q �= 0 then μ � λ.

Proof. Let μ ∈ Par(n) and suppose μ∇Ω(λ)Q �= 0. Thus ξμHomSym(n)(Sp(λ)Q, MQ) �= 0
i.e., HomSym(n)(Sp(λ)Q, M(μ)Q) �= 0 and so μ � λ, giving (ii). Moreover

ξλHomSym(n)(Sp(λ)Q,MQ) = HomSym(n)(Sp(λ)Q,M(λ)Q) = Q

giving (i). �
For λ ∈ Par(n) we set

ξλ =
{
ξα(λ), if λ ∈ ζ(Ω) :
0, otherwise.

For λ ∈ Par(n) we set SR(λ) = SRξλSR and for σ ⊆ Par(n) set

SR(σ) =
∑
λ∈σ

SR(λ).

We also write simply S(λ) for SZ(λ) and S(σ) for SZ(σ).
Let ≤ be a partial order on Par(n) which is a refinement of the dominance partial 

order. For λ ∈ ζ(Ω) we set SR(≥ λ) = SR(σ), where σ = {μ ∈ Par(n) | μ ≥ λ}, and 
SR(> λ) = SR(τ), where τ = {μ ∈ Par(n) | μ > λ}. Thus

SR(≥ λ) = SRξλSR + SR(> λ).

We set VR(λ) = SR(≥ λ)/SR(> λ). So we have

VR(λ)λ = (SRξλ + SR(> λ))/SR(> λ),
λVR(λ) = (ξλSR + SR(> λ))/SR(> λ)

and the multiplication map SRξλ × ξλSR → SR induces a surjective map

φR(λ) : VR(λ)λ ⊗R
λVR(λ) → VR(λ).

For left SR-modules P, Q and λ ∈ Par(n) we define Homλ
Sym(n)(P, Q) to be the 

R-submodule of HomSym(n)(P, Q) spanned by all composite maps f ◦ g, with f ∈
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HomSym(n)(M(λ)R, Q) and g ∈ HomSym(n)(P, M(λ)R). For a subset σ of Par(n) we 
set

Homσ
Sym(n)(P,Q) =

∑
λ∈σ

Homλ
Sym(n)(P,Q).

We note some similarity of our approach here via these groups of homomorphisms 
with the approach to Schur algebras due to Erdmann, [8], via stratification.

For λ ∈ Par(n) we define Hom≥λ
Sym(n)(P, Q) = Homσ

Sym(n)(P, Q), where σ = {μ ∈
Par(n) | μ ≥ λ}, and Hom>λ

Sym(n)(P, Q) = Homτ
Sym(n)(P, Q), where τ = {μ ∈ Par(n) | μ >

λ}.
Note that if λ /∈ ζ(Ω) then VR(λ) = 0. Suppose λ ∈ ζ(Ω). Then we have

SRξλSR =
∑

α,β,γ,δ∈ΛΩ

HomSym(n)(Mα,R,Mβ,R)ξλHomSym(n)(Mγ,R,Mδ,R)

=
∑

α,δ∈ΛΩ

HomSym(n)(Mα,R,Mα(λ))ξλHomSym(n)(Mα(λ),Mδ,R)

=
⊕

α,β∈ΛΩ

Homλ
Sym(n)(Mα,R,Mβ,R)

and hence

SR(σ) =
⊕

α,β∈ΛΩ

Homσ
Sym(n)(Mα,R,Mβ,R) (1)

for σ ⊆ Par(n). In particular we have

SR(≥ λ) =
⊕

α,β∈ΛΩ

Hom≥λ
Sym(n)(Mα,R,Mβ,R)

and

SR(> λ) =
⊕

α,β∈ΛΩ

Hom>λ
Sym(n)(Mα,R,Mβ,R)

and hence

VR(λ) =
⊕

α,β∈ΛΩ

Hom≥λ
Sym(n)(Mα,R,Mβ,R)/Hom>λ

Sym(n)(Mα,R,Mβ,R). (2)

Example 3.2. Of crucial importance is the motivating example of the usual Schur algebra 
S(n, r). Let R be a commutative ring and let ER be a free R-module of rank n. Then 
Sym(r) acts on the r-fold tensor product E⊗r

R = ER ⊗ · · · ⊗R ER by place permutation, 
and the Schur algebra SR(n, r) may be realised as EndSym(r)(E⊗r

R ).
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We choose an R-basis e1, . . . , en of ER. We write I(n, r) for the set of maps from 
{1, . . . , r} to {1, . . . , n}. We regard i ∈ I(n, r) as an r-tuple of elements (i1, . . . , ir) with 
entries in {1, . . . , n} (where ia = i(a), 1 ≤ a ≤ r). The group Sym(r) acts on I(n, r) by 
composition of maps, i.e., by w · i = i ◦ w−1, for w ∈ Sym(r), i ∈ I(n, r). For i ∈ I(n, r)
we write ei for ei1 ⊗ · · · ⊗ eir . Then we have w · ei = ei◦w−1 , for i ∈ I(n, r).

Thus we may regard E⊗r
R as the RSym(r) permutation module RΩ on Ω = I(n, r). 

Note that ζ(Ω) = Λ+(n, r), the set of partitions of r with at most n parts. We write 
Λ(n, r) for the set of weights, i.e., the set of n-tuples of non-negative integers α =
(α1 . . . , αn) such that α1 + · · · + αn = r. An element i of I(n, r) has weight wt(i) =
(α1, . . . , αn) ∈ Λ(n, r), where αa = |i−1(a)|, for 1 ≤ a ≤ n. For α ∈ Λ(n, r) we have the 
orbit Oα consisting or all i ∈ I(n, r) such that wt(i) = α. Then RΩ =

⊕
α∈Λ(n,r) ROα.

4. Groups of homomorphisms between Young permutation modules

In the situation of the Example 3.2 it follows from the quasi-hereditary structure of 
SZ(n, r) that VZ(λ) is a free abelian group - indeed an explicit basis is given by Green 
in [11, (7.3) Theorem, (ii), (iii)]. Thus, taking r = n, from Section 3, (2), we have the 
following.

Lemma 4.1. For all λ, μ, τ ∈ Par(n) the quotient

Hom≥λ
Sym(n)(M(μ),M(τ))/Hom>λ

Sym(n)(M(μ),M(τ))

is torsion free.

We can improve on this somewhat. A subset σ of Par(n) will be called cosaturated 
(also said to be a coideal) if whenever λ, μ ∈ σ, λ ∈ σ and λ ≤ μ then μ ∈ σ.

Proposition 4.2. Let σ, τ be cosaturated subsets of Par(n) with the τ ⊆ σ. Then, for all 
μ, ν ∈ Par(n), the quotient

Homσ
Sym(n)(M(μ),M(ν))/Homτ

Sym(n)(M(μ),M(ν))

is torsion free.

Proof. If there is a cosaturated subset θ with τ ⊂ θ ⊂ σ (and θ �= σ, τ) and if

Homσ
Sym(n)(M(μ),M(ν))/Homθ

Sym(n)(M(μ),M(ν))

and

Homθ
Sym(n)(M(μ),M(ν))/Homτ

Sym(n)(M(μ),M(ν))
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are torsion free then so is

Homσ
Sym(n)(M(μ),M(ν))/Homτ

Sym(n)(M(μ),M(ν)).

Thus we are reduced to the case τ = σ\{λ}, where λ is a minimal element of σ. We choose 
a total order 
 on Par(n) refining ≤ such that, writing out the elements of Par(n) in 
descending order λ1 � λ2 · · · � λh we have τ = {λ1, . . . , λk}, σ = {λ1, . . . , λk+1} (so 
λ = λk+1) for some k. Then we have

Homσ
Sym(n)(M(μ),M(ν))/Homτ

Sym(n)(M(μ),M(ν)

= Hom�λ
Sym(n)(M(μ),M(ν))/Hom�λ

Sym(n)(M(μ),M(ν)

which is torsion free by the Lemma. �
Returning to the general situation we have, by the Proposition and Section 3, (2), the 

following results.

Corollary 4.3. The S-module V (λ) is torsion free.

Corollary 4.4. Let σ be a cosaturated set (with respect to ≤). Then S(σ) is a pure sub-
module of S.

5. Cosaturated Sym(n)-sets

From Corollary 4.4, if σ is any cosaturated subset of Par(n) then we may identify 
Q ⊗Z S(σ) with an SΩ,Q-submodule of SΩ,Q via the natural map Q ⊗Z S(σ) → SQ.

We now suppose that Ω is cosaturated, by which we mean that ζ(Ω) is a cosaturated 
subset of Par(n). We check that much of the structure, described by Green for the Schur 
algebras in [11], still stands in this more general case.

Let σ be a cosaturated subset of the support ζ(Ω) of Ω. Let μ ∈ ζ(Ω). If ∇Ω(μ)Q
is a composition factor of SQ(σ) then it is a composition factor of SQ(λ) and hence of 
SQξλ, for some λ ∈ σ. Thus we have HomSym(n)(SQξλ, ∇Ω(μ)Q) �= 0 and so μ ≥ λ, 
Lemma 3.1(ii), and therefore μ ∈ σ.

We fix λ ∈ ζ(Ω). Then HomSym(n)(SQξλ, ∇Ω(λ)Q) = λ∇Ω(λ)Q = Q, by Lemma 3.1(i), 
so that ∇Ω(λ)Q is a composition factor of S(≥ λ)Q, but not of SQ(> λ). Now we can 
write SQ(≥ λ) = SQ(> λ) ⊕ I for some ideal I which, as a left SQ-module, has only the 
composition factor ∇Ω(λ)Q. Hence I is isomorphic to the matrix algebra Md(Q), where 
d = dim∇Ω(λ)Q, and, as a left SQ-module SQ(≥ λ)/SQ(> λ) is a direct sum of d copies 
of ∇Ω(λ)Q. Hence

dimQ
λVQ(λ) = dimQ HomSym(n)(SQξλ, VQ(λ))

= d dimQ HomSym(n)(SQξλ,∇Ω(λ)Q)
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= d dimQ
λ∇Ω(λ)Q = d.

Thus dimVQ(λ)λ ⊗Q
λVQ(λ) = dimVQ(λ) and we have:

the natural map VQ(λ)λ ⊗Q
λVQ(λ) → VQ(λ) is an isomorphism. (1)

We now consider the integral version. We have the natural surjective map V (λ)λ ⊗Z
λV (λ) → V (λ). But the rank of V (λ)λ is the dimension of VQ(λ)λ, the rank of λV (λ)
is the dimension of λVQ(λ), and the rank of V (λ) is the dimension of VQ(λ) so that, by 
(1), V (λ)λ ⊗Z

λV (λ) and V (λ) have the same rank. Thus the surjective map V (λ)λ ⊗Z
λV (λ) → V (λ) is an isomorphism.

We have shown the following.

Proposition 5.1. Assume Ω is cosaturated. Then, for each λ ∈ Par(n), the map

V (λ)λ ⊗Z
λV (λ) → V (λ)

induced by multiplication in S, is an isomorphism.

Remark 5.2. If k is a field then the corresponding algebras SΩ,k over k are Morita equiv-
alent to those considered by Mathas and Soriano in [17]. There they determined the 
blocks of such algebras (for the Schur algebras themselves this was done in [5], and for 
the quantised Schur algebras by Cox in [2]).

6. Cellularity of endomorphism algebras of Young permutation modules

We now establish our main result, namely that the endomorphism algebra of a Young 
permutation module has the structure of a cellular algebra. We first recall the notion of 
a cellular algebra due to Graham and Lehrer, [9]. (We have made some minor notational 
changes to be consistent with the notation above. The most serious of these is the reversal 
of the partial order from the definition given in [9].)

Definition 6.1. Let A be an algebra over a commutative ring R. A cell datum for 
(Λ+, N, C, ∗ ) for A consists of the following.

(C1) A partially ordered set Λ+ and for each λ ∈ Λ+ a finite set N(λ) and an injective 
map C :

∐
λ∈Λ+ N(λ) ×N(λ) → A with image an R-basis of A.

(C2) For λ ∈ Λ+ and t, u ∈ N(λ) we write C(t, u) = Cλ
t,u ∈ R. Then ∗ is an R-linear 

anti-involution of A such that (Cλ
t,u)∗ = Cλ

u,t.
(C3) If λ ∈ Λ+ and t, u ∈ N(λ) then for any element a ∈ A we have

aCλ
t,u ≡

∑
′

ra(t′, t)Cλ
t′,u (mod A(> λ))
t ∈N(λ)
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where ra(t′, t) ∈ R is independent of u and where A(> λ) is the R-submodule of A
generated by {Cμ

t′′,u′′ | μ ∈ Λ+, μ > λ and t′′, u′′ ∈ N(μ)}.

We say that A is a cellular R-algebra if it admits a cell datum.

Let G be a finite group. Let Ω be a finite G-set and let R be a commutative ring. Now 
G acts on Ω × Ω. If A ⊆ Ω × Ω is G-stable then we have an element aA ∈ EndG(RΩ)
satisfying

aA(x) =
∑
y

y

where the sum is over all y ∈ Ω such that (y, x) ∈ A. We write OrbG(Ω × Ω) for the set 
of G-orbits in Ω ×Ω. Then EndRG(RΩ) free over R on basis aA, A ∈ OrbG(Ω ×Ω). We 
have an involution on Ω × Ω defined by (x, y)∗ = (y, x), x, y ∈ Ω. For a G-stable subset 
A of Ω × Ω we write A∗ for the G-stable set {(x, y)∗ | (x, y) ∈ A}.

For A, B ∈ OrbG(Ω × Ω) we have

aAaB =
∑

C∈OrbG(Ω×Ω)

nC
A,BaC

where, for fixed x ∈ A, y ∈ B, the coefficient nC
A,B is the cardinality of the set 

{z ∈ C | (x, z) ∈ A and (z, y) ∈ B}. It follows that EndRG(RΩ) has an involutory anti-
automorphism satisfying a∗D = aD∗ , for a G-stable subset D of Ω × Ω.

The notion of cellularity has built into it an involutory anti-automorphism ∗ and in 
the case of endomorphism algebras of permutation modules, we shall always use the one 
just defined.

We now restrict to the case G = Sym(n) with Ω a Young Sym(n)-set as usual and 
label by Oα, α ∈ ΛΩ, the G-orbits in Ω. Now, for α ∈ ΛΩ and x ∈ Ω we have

ξα(x) =
{
x, if x ∈ Oα;
0, otherwise.

Hence ξα = aA, where A = {(x, x) | x ∈ Oα} and therefore ξ∗α = ξα. In particular we 
have ξ∗λ = ξλ for λ ∈ ζ(Ω). Thus we also have SΩ,R(σ)∗ = SΩ,R(σ), for σ ⊆ Par(n).

Note that if Γ is a G-stable subset of Ω then we have the idempotent eΓ ∈ SΩ,R given 
on elements of Ω by

eΓ(x) =
{
x, if x ∈ Γ ;
0, if x /∈ Γ.

Thus eΓ = aC where C = {(y, y) | y ∈ Γ} and e∗Γ = eΓ.
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So now let Γ be a Young Sym(n)-set and let Ω be a cosaturated Young Sym(n)-set con-
taining Γ. We have the idempotent e = eΓ ∈ SΩ,R as above and SΓ,R = EndSym(n)(RΓ)
is naturally identified with eSΩ,Re.

Lemma 6.2. For λ ∈ ζ(Ω) we have eΓ∇Ω(λ)Q �= 0 if and only if λ ∈ ζ�(Γ).

Proof. We have eΓ =
∑

α∈ΛΓ
ξα. Hence eΓ∇Ω(λ)Q �= 0 if and only if ξα∇Ω(λ)Q �= 0

i.e., 
∑

β∈ΛΩ
ξαHomSym(n)(Sp(λ)Q, Mβ,Q) �= 0, for some α ∈ ΛΓ. Hence eΓ∇Ω(λ)Q �=

0 if and only if HomSym(n)(Sp(λ)Q, Mβ,Q) �= 0 for some β ∈ ΛΓ, i.e., if and only if 
HomSym(n)(Sp(λ), M(μ)Q) �= 0 for some μ ∈ ζ(Γ), i.e., if and only if there exists μ ∈ ζ(Γ)
such that μ � λ. �

We fix a partial order ≤ on ζ(Ω) refining the partial order �.
Let λ ∈ ζ(Ω). We have the section V (λ) = S(≥ λ)/S(> λ) of S = SΩ.
We write Jop for the opposite ring of a ring J . We write Senv for the enveloping 

algebra S ⊗Z Sop. We identify an (S, S)-bimodule with a left Senv-module in the usual 
way.

We have the idempotent ẽ = e ⊗e ∈ Senv and hence the Schur functor f̃ : mod(Senv) →
mod(ẽSenvẽ) as in [12, Chapter 6]. Moreover, ẽSenvẽ = eSe ⊗Z (eSe)op. Now f̃ is exact 
so applying it to the isomorphism V (λ)λ⊗Z

λV (λ) → V (λ) of Proposition 5.1 we obtain 
an isomorphism

e V (λ)λ ⊗Z
λV (λ) e → eV (λ)e. (1)

Now ξλS + S(> λ) = (Sξλ + S(> λ))∗ so that eV (λ)e �= 0 if and only if eV (λ)λ �= 0. 
Moreover, V (λ)λ is a Z-form of ∇(λ)Q so that eV (λ)e �= 0 if and only if e∇Ω(λ)Q �= 0. 
Hence by, Lemma 6.2:

eV (λ)e �= 0 if and only if λ ∈ ζ�(Γ). (2)

We now assemble our cell data. We have the set Λ+ = ζ�(Γ) with partial order 
induced from the partial order ≤ on ζ(Ω) (and also denoted ≤). Let λ ∈ Λ+. We let 
nλ = dimQ e∇Ω(λ)Q and set N(λ) = {1, . . . , nλ}. The rank of eV (λ)λ is nλ. We choose 
elements dλ,1, . . . , dλ,nλ

of eSξλ such that the elements dλ,1 +S(> λ), . . . , dλ,nλ
+S(> λ)

form a Z-basis of eV (λ)λ = (eSξλ + S(> λ))/S(> λ). Then d∗λ,1, . . . , d
∗
λ,nλ

belong to 
(eSξλ)∗ = ξλSe and the elements d∗λ,1 + S(> λ), . . . , d∗λ,nλ

+ S(> λ) form a Z-basis of 
λV (λ)e = (ξλSe + S(> λ))/S(> λ). The product dλ,td∗λ,u belongs to eSξλSe. We define 
C :

∐
λ∈Λ+ N(λ) ×N(λ) → eSe by C(t, u) = Cλ

t,u = dλ,td
∗
λ,u, for t, u ∈ N(λ).

Let M be the Z-span of all Cλ
t,u, λ ∈ Λ+, t, u ∈ N(λ). We claim that M = eSe. 

We have S =
∑

λ∈ΛΩ
SξλS so that if the claim is false then there exists λ ∈ ΛΩ such 

that eSξλSe � M . In that case we choose λ minimal with this property. First suppose 
that λ /∈ ζ�(Γ). Then we have eV (λ)e = 0, by (2), i.e., eSξλSe ⊆ S(> λ) and so 
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eSξλSe ⊆ eS(> λ)e. However, eS(> λ)e =
∑

μ>λ eSξμSe ⊆ M , by minimality of λ and 
so eSξλSe ⊆ M . Thus we have λ ∈ Λ+ = ζ�(Γ).

Now by (1) the map

(eSξλ + S(> λ)) ⊗Z (ξλSe + S(> λ)) → eSξλSe + S(> λ)

induced by multiplication is surjective. Moreover we have eSξλ+S(> λ) =
∑nλ

t=1 Zdλ,t+
S(> λ) and ξλSe + S(> λ) =

∑nλ

u=1 Zd
∗
λ,u + S(> λ) so that

eSξλSe ⊆
nλ∑

t,u=1
Zdλ,td

∗
λ,u + S(> λ) =

nλ∑
t,u=1

ZCλ
t,u + S(> λ)

and hence

eSξλSe ⊆
nλ∑

t,u=1
ZCλ

t,u + eS(> λ)e.

But now 
∑nλ

t,u=1 ZC
λ
t,u ⊆ M by definition and again eS(> λ)e ⊆ M by the minimality 

of λ so that eSξλSe ⊆ M and the claim is established.
The elements Cλ

t,u, λ ∈ Λ+, 1 ≤ t, u ≤ nλ form a spanning set of eSΩe = SΓ. But 
the rank of eSe is the Q-dimension of eSQe, i.e., the Q-dimension of SΓ,Q and this is ∑

λ∈Λ+(dim e∇Ω(λ))2 by Remark 2.2. Hence the elements Cλ
t,u, with λ ∈ Λ+, t, u ∈ N(λ), 

form a Z-basis of eSe.
We have now checked the defining properties (C1) and (C2) of cell structure and it 

remains to check (C3). We fix λ ∈ Λ+ and let 1 ≤ t, u ≤ nλ. Let a ∈ eSe. Then we have

aCλ
t,u = adλ,td

∗
λ,u.

Now we have 
∑nλ

i=1 Zdλ,i + S(> λ) = eSξλ + S(> λ) so we may write adλ,t =∑nλ

t′=1 ra(t′, t)dλ,t′ + y for some integers ra(t′, t) and an element y of S(> λ). Thus 
we have

aCλ
t,u =adλ,td

∗
λ,u =

nλ∑
t′=1

ra(t′, t)dλ,t′d∗λ,u + yd∗λ,u

=
nλ∑
t′=1

ra(t′, t)Cλ
t′,u + yd∗λ,u

and hence

aCλ
t,u =

nλ∑
t′=1

ra(t′, t)Cλ
t′,u (mod S(> λ)).

We have thus checked defining property (C3) and hence proved the following.
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Theorem 6.3. Let Γ be a Young Sym(n)-set. Then (Λ+, N, C, ∗) is a cell structure on 
SΓ,Z = eSΩ,Ze = EndSym(n)(ZΓ).

One now obtains a cell structure on EndSym(n)(RΓ), for any commutative ring R by 
base change.

Remark 6.4. This implies that, over a field, any endomorphism algebra of a Young 
Sym(n)-set is Schurian, i.e., every irreducible module is absolutely irreducible, by [9, 
(3.2) Proposition (ii) and (3.4) Theorem (i)]. One may also deduce this from eSe-theory 
as in [12, Section 6.2] and the result for Schur algebras (cf. [12, 3.5 Remarks (i)]).

There is also the question of when an endomorphism algebra over a field k is quasi-
hereditary. If k has characteristic 0 then EndSym(n)(kΓ) is semisimple and there is nothing 
to consider. We assume now that the characteristic of k is p > 0. By [9, Remark 3.10] (see 
also [15], [16]) EndSym(n)(kΓ) is quasi-hereditary if and only if the number of irreducible 
EndSym(n)(kΓ)-modules (up to isomorphism) is equal to the length of the cell chain, i.e., 
|ζ�(Γ)|. By Lemma 2.4, the number of irreducible EndSym(n)(kΓ)-modules is |ζ�p(Γ)|. 
Moreover, we have ζ�p(Γ) ⊆ ζ�(Γ) and so EndSym(n)(kΓ) is quasi-hereditary if and only 
if ζ�(Γ) ⊆ ζ�p(Γ). We spell this out in the following result.

Theorem 6.5. Let k be a field of characteristic p > 0 and let Γ be a Young Sym(n)-set. 
Then the endomorphism algebra EndSym(n)(kΓ) of the permutation module kΓ is quasi-
hereditary if and only if for every partition λ of n such that the Young subgroup Sym(λ)
appears as the stabiliser of a point of Γ and every partition μ � λ there exists a partition 
τ such that Sym(τ) appears as a point stabiliser and such that μ p-dominates τ , i.e., 
there exists a weak p expansion τ =

∑
i≥0 p

iγ(i), with γ(i) ∈ Λ(n), and γ(i) � μ(i) for 
all i (where μ =

∑
i≥0 p

iμ(i) is the base p-expansion of μ and where γ(i) is the partition 
obtained by writing the parts of γ(i) in descending order, for i ≥ 0).

Remark 6.6. We emphasise that the above gives a criterion for the endomorphism algebra 
EndSym(n)(kΓ) of the Young permutation module kΓ to be quasi-hereditary with respect 
to any labelling of the simple modules by a partially ordered set (which may have nothing 
to do with those considered above) thanks to the result of König and Xi, [16, Theorem 
3]. Thus if Γ does not satisfy the condition above then SΓ,k can not have finite global 
dimension by [16, Theorem 3] and hence is not quasi-hereditary.

7. Example: tensor powers

Let R be a commutative ring and let ER be a free R-module on basis e1,R, . . . , en,R. 
Let r be a positive integer and let I(n, r) be the set described in Example 3.2. Then the 
r-fold tensor product E⊗r

R = ER ⊗R ⊗ · · · ⊗R ER has R-basis ei,R = ei1,R ⊗ · · · ⊗ eir,R, 
i ∈ I(n, r), and we thus identify E⊗r

R with RI(n, r), the free R-module on I(n, r).
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Remark 7.1. The symmetric group Sym(r) acts on E⊗r
R by place permutations, i.e., 

w · ei,R = ei◦w−1,R, for w ∈ Sym(r), i ∈ I(n, r). Thus we may regard E⊗r
R as the 

permutation module RI(n, r), with Sym(r), acting on I(n, r) by w · i = i ◦ w−1. The 
endomorphism algebra EndSym(r)(E⊗r

R ) is the Schur algebra SR(n, r).
The stabiliser of i ∈ I(n, r) is the direct product of the symmetric groups on the 

fibres of i (regarded as a subgroup of Sym(r) in the usual way). Hence I(n, r) is a Young 
Sym(r)-set. Hence E⊗r

R is a Young permutation module and hence SR(n, r) is cellular. 
Moreover, ζ(I(n, r)) is the set Λ+(n, r) of all partitions of r with at most n parts. This is a 
cosaturated set and hence for a prime p we have ζ(I(n, r)) = ζ�(I(n, r)) = ζ�p(I(n, r)). 
Hence, for a field k of characteristic p the Schur algebra Sk(n, r) is quasi-hereditary.

However, this is not a new proof since our treatment relies crucially on a detail from 
Green’s analysis of SZ(n, r) as in [11], at least in the case n = r. (See Example 3.2 above 
and the proofs of the results of Section 4.)

We now regard ER as an RSym(n)-module with Sym(n) permuting the basis 
e1,R, . . . , en,R in the natural way. This action induces an action on the tensor prod-
uct E⊗r

R . Specifically, we have w · ei,R = ew◦i,R, for w ∈ Sym(n), i ∈ I(n, r), and we thus 
regard E⊗r

R as the permutation module RI(n, r). For w ∈ Sym(n), i ∈ I(n, r) we have 
w ◦ i = i if and only if w acts as the identity on the image of i, so that the stabiliser of i
is the group of symmetries of the complement of the image of i in {1, . . . , n}, identified 
with a subgroup of Sym(n) in the usual way. Thus I(n, r) is a Young Sym(n)-set so we 
have the following consequence of Theorem 6.3, answering a question raised in [1].

Proposition 7.2. The endomorphism algebra EndSym(n)(E⊗r
R ) = EndSym(n)(RI(n, r)) is 

a cellular algebra.

The support of I(n, r) consists of hook partitions, more precisely we have

ζ(I(n, r)) = {(a, 1b) | a + b = n, 1 ≤ b ≤ r}.

Hence we have

ζ�(I(n, r)) = {λ = (λ1, λ2, . . .) ∈ Par(n) |λ1 ≥ n− r}.

Let k be a field of characteristic p > 0. Then EndSym(n)(E⊗r
k ) is quasi-hereditary if and 

only if ζ�(I(n, r)) ⊆ ζ�p(I(n, r), i.e., if and only if for every μ = (μ1, μ2, . . .) ∈ Par(n)
with μ1 ≥ n − r there exists some λ = (a, 1b), 1 ≤ b ≤ r, such that λ �p μ.

We are able to give an explicit list of quasi-hereditary algebras arising in the above 
manner.

Proposition 7.3. Let k be a field of characteristic p > 0. Let n be a positive integer and 
E an n-dimensional k-vector space with basis e1, . . . , en. We regard E as a kSym(n)-
module with Sym(n) permuting the basis in the obvious way. For r ≥ 1 we regard the 
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rth tensor power E⊗r as a kSym(n)-module via the usual tensor product action. Then 
EndSym(n)(E⊗r) is quasi-hereditary if and only if:

(i) p does not divide n; and
(ii) either n < 2p (and r is arbitrary) or n > 2p and r < p.

Proof. We see this in a number of steps. We regard E⊗r as the permutation module 
kI(n, r), as above, with Sym(n) acting by w · i = w ◦ i, for w ∈ Sym(n), i ∈ I(n, r). We 
shall say that I(n, r) is quasi-hereditary if EndSym(n)(E⊗r) is.

Step 1. If p divides n then I(n, r) is not quasi-hereditary.
We have (n − 1, 1) ∈ ζ(I(n, r)) and (n, 0) � (n − 1, 1) so that (n, 0) ∈ ζ�(I(n, r)). 

Now n = pm, for some positive integer m, so that μ = (n, 0) = p(m, 0) has base p
expansion (n, 0) =

∑
i≥0 p

iμ(i), with restricted part μ(0) = 0. Thus if τ = (a, 1b) has 
weak p-expansion τ =

∑
i≥0 p

iγ(i) and γ(i) � μ(i), for all i, then γ(0) = 0 and τ is 
divisible by p. However, this is not the case so no such weak p-expansion exists and 
μ ∈ ζ�(I(n, r))\ζ�p(I(n, r)). Thus ζ�(I(n, r)) �= ζ�p(I(n, r)) and I(n, r) is not quasi-
hereditary.

Step 2. If p does not divide n then I(n, 1) is quasi-hereditary.
We have ζ(I(n, 1)) = {(n − 1, 1)}. If μ ∈ ζ�(I(n, 1))\ζ�p(I(n, r)) then μ = (n, 0). 

Now n has base p expansion n =
∑

i≥0 p
ini, with 0 ≤ ni < p for all i ≥ 0 and n0 �= 0

and μ has base p expansion μ =
∑

i≥0 p
iμ(i), with μ(i) = (ni, 0), for all i ≥ 0.

But now we write

τ = (n− 1, 1) = (n0 − 1, 1) +
∑
i≥1

pi(ni, 0)

and τ has weak p-expansion τ =
∑

i≥0 p
iγ(i), with γ(0) = (n0 − 1, 1), γ(i) = (ni, 0) for 

i ≥ 1. Moreover γ(i) ≤ μ(i), for all i so that (n, 0) ∈ ζ�p(I(n, 1)). Thus ζ�(I(n, 1)) =
ζ�p(I(n, 1)) and I(n, 1) is quasi-hereditary.

Step 3. If μ ∈ ζ�(I(n, r)) is p-restricted then μ ∈ ζ�p(I(n, r))
We have μ � (a, 1b) for some n = a + b, 1 ≤ b ≤ r. The partition μ has base p

expansion μ =
∑

i≥0 p
iμ(i), with μ(i) = 0 for all i ≥ 1.

But now τ = (a, 1b) has weak p-expansion τ =
∑

i≥0 p
iγ(i), with γ(0) = (a, 1b) and 

γ(i) = 0 for all i ≥ 1. Furthermore we have γ(i) � μ(i) for all i ≥ 0 so μ ∈ ζ�p(I(n, r)).

Step 4. If n < p then I(n, r) is quasi-hereditary.
This follows from Step 3 since all elements of Par(n) are restricted.

Step 5. If p < n < 2p then I(n, r) is quasi-hereditary.
For a contradiction suppose not and let μ = (μ1, μ2, . . .) ∈ ζ�(I(n, r))\ζ�p(I(n, r)). 

We have μ � (a, 1b) for some a, b with n = a +b, 1 ≤ b ≤ r. Choose a, b with this property 
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with b ≥ 1 minimal. If b = 1 then μ ∈ ζ�(I(n, 1)), which by Step 2 is ζ�p(I(n, 1)). Thus 
we have b ≥ 2.

We claim that μ1 = a. Since μ � (a, 1b) the length l, say, of μ is at most the length 
of (a, 1b), i.e., b + 1. Put ξ = (ξ1, ξ2, . . .) = (a + 1, 1b−1). If μ1 > a then μ1 ≥ ξ1 and, for 
1 < i ≤ l, we have

μ1 + · · · + μi ≥ a + 1 + (i− 1) = a + i = ξ1 + · · · + ξi.

So μ � ξ = (a + 1, 1b−1), which is a contradiction, and the claim is established.
Note that μ is non-restricted, by Step 3, and, since μ is a partition of n < 2p in the 

base p expansion μ =
∑

i≥0 p
iμ(i) of μ, we must have μ(1) = (1, 0) and μ(i) = 0 for 

i ≥ 2. Let τ = (a, 1b). Then τ � μ implies that τ − (p, 0) � μ − (p, 0) = μ(0). But now

τ = (a, 1b) = (a− p, 1b) + p(1, 0)

so we have the weak p expansion τ =
∑

i≥0 p
iγ(i) with γ(0) = (a − p, 1b), γ(1) = (1, 0)

and γ(i) = 0 for i > 1. Since γ(i) � μ(i) for all i ≥ 0 we have (a, 1b) �p μ and so 
μ ∈ ζ�p(I(n, r)), a contradiction.

Step 6. If n > 2p and r ≥ p then I(n, r) is not quasi-hereditary.
Note that ζ(I(n, r)) contains (n −p, 1p) and hence ζ�(I(n, r)) contains μ = (n −p, p). 

Now we have μ = (n − 2p, 0) + p(1, 1) and so μ = μ(0) + pξ, where μ(0) has at most one 
part and ξ has two parts. Hence in the base p expansion μ =

∑
i≥0 p

iμ(i), there is for 
some j ≥ 1, such that μ(j) has two parts.

Now if μ ∈ ζ�p(I(n, r)) then there exists some τ = (a, 1b) with weak p expansion 
τ =

∑
i≥0 p

iγ(i) such that γ(i) � μ(i) for all i ≥ 0. But then γ(j) must have at 
least two parts. Since j ≥ 1, the partition τ = (a, 1b) has two parts of size at least p. 
This is not the case so there is no such weak p expansion and μ /∈ ζ�p(I(n, r)). Thus 
ζ�(I(n, r)) �= ζ�p(I(n, r)) and I(n, r) is not quasi-hereditary.

Step 7. If n > 2p, if p does not divide n and if r < p, then I(n, r) is quasi-hereditary.
If not there exists μ = (μ1, μ2, . . .) ∈ ζ�(I(n, r))\ζ�p(I(n, r)). Thus μ � (a, 1b), for 

some n = a + b, b ≥ 1 and, as in Step 5, we choose such (a, 1b) with b minimal. Again, 
by Step 2, we have b ≥ 2.

We claim that μ1 = a. If not, we get μ � (a + 1, 1b−1) as in Step 5, contradicting the 
minimality of b.

Thus we have μ2+ · · ·+μn = n −μ1 = b < p, in particular we have μi < p for all i ≥ 1. 
Hence in the base p expansion μ =

∑
i≥0 p

iμ(i), for all i ≥ 1 we have μ(i) = (ci, 0, . . . , 0), 
for some 0 ≤ ci < p. Also, μ(0) = (k, μ2, . . . , μn), for some k > 0.

Now we have

τ = (a, 1b) = (k +
∑

pici, 1b) = (k, 1b) +
∑

pi(ci, 0, . . . , 0).

i≥1 i≥1
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Thus we have the weak p-expansion τ =
∑

i≥0 p
iγ(i), with γ(0) = (k, 1b) and γ(i) =

(ci, 0, . . . , 0), for i ≥ 1. Furthermore, γ(i) � μ(i), for all i ≥ 0 so that μ ∈ ζ�p(I(n, r))
and therefore ζ�(I(n, r)) = ζ�p(I(n, r)) and I(n, r) is quasi-hereditary. �

Let k be a field. Recall that, for δ ∈ k, and r a positive integer we have the partition 
algebra Pr(δ) over k. One may find a detailed account of the construction and properties 
of Pr(δ) in for example the papers by Paul P. Martin, [18], [19], and [13], [1]. Suppose 
now that k has characteristic p > 0 and δ = n1k, for some positive integer n. Let En

be an n-dimensional vector space with basis e1, . . . , en. Then Pr(n) = Pr(n1k) acts on 
E⊗r

n . By a result of Halverson-Ram, [13, Theorem 3.6] the image of the representation 
Pr(n) → Endk(E⊗r

n ) is EndSym(n)(E⊗r). Moreover, for n � 0 the action of Pr(n) is 
faithful. Let N = n + ps, for s suitably large, so that Pr(n) = Pr(N) acts faithfully 
on E⊗r

N . Thus Pr(n) is quasi-hereditary if and only if EndSym(N)(E⊗r
N ) is. Hence from 

Proposition 7.3 we have the following, which is a special case of a result of König and 
Xi, [16, Theorem 1.4].

Corollary 7.4. The partition algebra Pr(n) is quasi-hereditary if and only if n is prime 
to p and r < p.

8. Quasi-hereditary endomorphism algebras of Young permutation modules and 
generalised Schur algebras

This section and the next were prompted by two questions raised by the referee, to 
whom I am most grateful.

The first point is to relate quasi-hereditary endomorphism algebras of Young permu-
tation modules to generalised Schur algebras, as in [3], [4], [6], and second is to note that 
the decomposition numbers for endomorphism algebras of Young permutation modules 
are decomposition numbers for general linear groups.

We fix a positive integer n and a field k of characteristic p > 0. We write ks for the 
sign module for Sym(n) i.e., the field k regarded as the one dimensional kSym(n)-module 
on which a permutation acts according to sign. For a finite dimensional kSym(n)-module 
Y , the endomorphism algebra EndSym(n)(Y ) is isomorphic to the endomorphism algebra 
EndSym(n)(ks⊗Y ). Let σ be a subset of Par(n). We consider the endomorphism algebra 
EndSym(n)(Y ), where Y is a kSym(n)-module of the form Y =

⊕
λ∈σ Y (λ)(dλ), with 

dλ �= 0, for all λ ∈ σ.
We now bring into play the representation theory of the Schur algebra S(n, r) over 

k, for r ≥ 1. We write Λ+(n, r) for the set of partitions of r with at most n parts. 
For λ ∈ Λ+(n, r) we have an irreducible module Ln(λ), as in [7]. The modules Ln(λ), 
λ ∈ Λ+(n, r), form a complete set of pairwise non-isomorphic irreducible modules. The 
algebra S(n, r) is quasi-hereditary with respect to the partial order � on Λ+(n, r) and 
this labelling of the irreducible modules. We have the costandard module ∇n(λ) and 
tilting module Tn(λ), for λ ∈ Par(n).
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As in [12] we may realise the group algebra kSym(n) as the algebra eS(n, n)e, 
for a certain idempotent e ∈ S(n, n) and as in [12, Chapter 6] we have the Schur 
functor f : mod(S(n, n)) → mod(kSym(n)), given on objects by fV = eV . For 
λ ∈ Par(n) we write λ′ for the transpose partition. For a subset τ of Par(n) we 
set τ ′ = {λ′ | λ ∈ τ}. We have fTn(λ) = ks ⊗ Y (λ′), for λ ∈ Par(n), by [6, (3.6) 
Lemma (ii)]. Hence we have ks ⊗ Y =

⊕
λ∈π fTn(λ)(dλ), where π = σ′. Moreover, for 

λ, μ ∈ Par(n) the Schur functor induces an isomorphism from HomS(n,n)(Tn(λ), Tn(μ))
to HomSym(n)(fTn(λ), fTn(μ)), by [7, 4.4(1)(ii)]. Thus EndSym(n)(Y ) is isomorphic to 
EndS(n,n)(T ), where T =

⊕
λ∈π Tn(λ)(dλ).

We now assume that σ is cosaturated. Let S(π) be the generalised Schur algebra, 
defined by the saturated set π, as in [3], [4]. We say that a finite dimensional S(n, n)-
module V belongs to π if each composition factor of V has the form Ln(μ) for some 
μ ∈ π. For λ ∈ π the module Tn(λ) belongs to π and so is naturally a module for S(π), 
and indeed Tn(λ) is the indecomposable tilting module for S(π) labelled by λ. Thus T is 
a full tilting module for S(π) and EndSym(n)(Y ) is, up to Morita equivalence, the Ringel 
dual of S(π). We have shown:

Proposition 8.1. Let σ be a cosaturated subset of Par(n). Let Y be a module of the form ⊕
λ∈σ Y (λ)dλ), with dλ �= 0 for all λ ∈ σ. Then EndSym(n)(Y ) is (up to Morita equiva-

lence) the Ringel dual of the generalised Schur algebra S(π), where π = σ′.

Corollary 8.2. Let Ω be a Young Sym(n)-set. If the algebra EndSym(n)(kΩ) is quasihered-
itary then it is, up to Morita equivalence, the Ringel dual of the generalised Schur algebra
S(π), for GLn(k), where π = σ′, with σ = ζ�(Ω).

Proof. The summands of kΩ are the Young modules Y (λ), λ ∈ ζ�p(Ω), by Theorem 6.3, 
and the condition for EndSym(kΩ) to be quasihereditary is that ζ�p(Ω) is the cosaturated 
set ζ�(Ω), whence the result. �
9. Decomposition numbers of endomorpism algebras of Young permutation modules

The point here is to check that the decomposition numbers for endomorphism al-
gebras of Young permutation modules, in particular the partition algebras considered 
in Section 7, are decomposition numbers for general linear groups. One may see this 
as a generalisation of the Theorem of James for symmetric groups, see e.g., [12, (6.6g) 
Theorem].

Our first task is to show that our labelling of simple modules in the case I = I(n, n), 
with action w · i = i ◦ w−1, agrees with the usual labelling of simple modules for the 
Schur algebra S = S(n, n), by highest weight. For i ∈ I, let ei be the corresponding basis 
element of the permutation module kI. We have ΛI = Λ(n, n), the set of sequences of 
elements of {1, . . . , n} of length n, whose sum is n. The content of i = (i1, . . . , in) is the 
element α = (α1, . . . , αn) ∈ Λ(n, n), where α1 is the number of 1s in i, where α2 is the 
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number of 2s, etc. For α ∈ Λ(n, n) the corresponding orbit Oα is the set of i ∈ I(n, n)
with content α. For α ∈ Λ(n, n) weight space ξα(kI) is the span of the elements ei, 
with i ∈ I(n, n) having content α. For λ ∈ Par(n) we have ξαHomSym(n)(M(λ), kI) =
HomSym(n)(M(λ), ξα(kI)). By Frobenius reciprocity we have

dim ξαHomSym(n)(M(λ), kI) = dim HomSym(λ)(k, ξα(kI))

and ξα(kI) is the permutation module on the Sym(λ)-set on the set of i ∈ I(n, n)
that have content α. Hence dim ξαHomSym(n)(M(λ), kI) is the number N(λ, α), say of 
Sym(λ)-orbits of elements of i ∈ I(n, n) which have content α.

Now the α weight space of Sξλ is ξαSξλ. This has k-basis consisting of all ξij such 
that i has content α and j has content λ. We recall from, [12, Section 2.3], that for 
i, i′, j, j′ ∈ I(n, n) we have ξij = ξi′j′ if and only if there exists w ∈ Sym(n) such that 
i′ = i ◦w and j′ = j ◦w. We write jλ for the element (1, . . . , 1, 2, . . . , . . .) of I(n, n) whose 
entries are weakly increasing and in which 1 occurs λ1 times, 2 occurs λ2 times, and 
so on. Thus if i, j ∈ I(n, n) have contents α, λ then we may write ξij = ξhjλ , for some 
h ∈ I(n, n) with content α and, for h, h′ ∈ I(n, n) with content α we have ξijλ = ξh′jλ if 
and only if there exists w ∈ Sym(λ) such that h′ = h ◦w. Hence the dimension of ξαSξλ
is equal N(α, λ). Thus the projective modules HomSym(n)(M(λ), kI) and Sξλ have the 
same weight space multiplicities. It follows from the classification of irreducible S(n, n)-
modules by highest weight that finite dimensional modules with the same weight space 
multiplicities have the same composition factors (counted according to multiplicity). 
Moreover, the Cartan matrix of S(n, n) is non-singular (e.g., by [7, Proposition A 2.2 
(iv)]) so that finite dimensional projective modules with the same composition factors 
(counted according to multiplicity) are isomorphic. Hence HomSym(n)(M(λ), kI) and Sξλ
are isomorphic.

For λ ∈ Par(n) we write Q(λ) for the projective cover of Ln(λ). Now, for λ, μ ∈ Par(n), 
we have dim HomS(Sξλ, Ln(μ)) = dimLn(μ)λ so that

Sξλ =
⊕

μ∈Par(n)

Q(μ)(mλμ)

where mλμ = dimLn(μ)λ. Since Ln(λ) has unique highest weight λ and this occurs with 
multiplicity one we have

HomSym(n)(M(λ), kI) = Q(λ)
⊕

(
⊕
μ�λ

Q(μ)(mλμ))

But we also have

M(λ) = Y (λ)
⊕

(
⊕
μ�λ

Y (μ)(mλμ))

by [7, 4.4 (1)(v)], and hence
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HomSym(n)(M(λ), kI)

= HomSym(n)(Y (λ), kI)
⊕

(
⊕
μ�λ

HomSym(n)(Y (μ), kI)(mλμ)).

Thus we have

Q(λ)
⊕

(
⊕
μ�λ

Q(μ)(mλμ)) = PI(λ)
⊕

(
⊕
μ�λ

PI(μ)(mλμ)).

Now it follows by descending induction that Q(λ) = PI(λ), for all λ ∈ Par(n). Hence we 
have:

LI(λ) = Ln(λ), for all λ ∈ Par(n). (1)

We briefly consider the more general case of permutation modules over a finite group 
G. Let Ω be a finite G-set and J a commutative ring. We write SΩ,J , or just SΩ for 
EndG(JΩ). For a G-stable subset O of Ω × Ω we write aO,Ω for the element of SΩ
given on an element x ∈ Ω by aO,Ω(x) =

∑
y y, with the sum over all y ∈ Ω such that 

(y, x) ∈ O. Then, as in Section 6, SΩ has J-basis aO,Ω, with O ranging over the G-orbits 
in Ω × Ω.

Let Γ be a G-stable subset of Ω. We have the idempotent eΓ ∈ SΩ, whose value on 
x ∈ Ω is x if x ∈ Γ and 0 otherwise. For an orbit O in Ω × Ω we have

eΓaO,ΩeΓ =
{
aO,Ω, if O ⊆ Γ × Γ
0, otherwise.

We identify the J-algebra SΓ with eΓSΩeΓ by identifying aO,Γ with aO,Ω, for a G-orbit 
O in Γ × Γ. We have the Schur functor fΩ,Γ : mod(SΩ) → mod(SΓ), as in [12, Chapter 
6], given on objects by fΩ,ΓZ = eΓZ. (One should perhaps write eΓ,J and fΩ,Γ,J for eΓ
and fΩ,Γ but we hope that in what follows the base ring will be clear from the context.) 
Note that if Γ ⊆ I ⊆ Ω are G-sets then fΩ,Γ = fI,Γ ◦ fΩ,I .

Let F be a field. Let V be a finite dimensional FG-module. Then HomG(V, FΩ) is 
naturally an SΩ-module. We leave the details of the following to the reader.

We have an isomorphism of SΓ-modules from HomG(V, FΓ)
to fΩ,ΓHomG(V, FΩ), taking θ ∈ HomG(V, FΓ) to
i ◦ θ ∈ HomG(V, FΩ), where i : FΓ → FΩ is inclusion.

(2)

We now restrict attention to the case in which G = Sym(n) and Ω is a Young Sym(n)-
set. Let R be a principal ideal domain with characteristic 0 field of fractions K. Let m be 
a maximal ideal of R and let k be a field containing the residue field R/m and suppose 
that k has characteristic p > 0. The modules PΩ(λ) = HomG(Y (λ), kΩ), λ ∈ ζ�p(Ω)
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form a complete set of pairwise non-isomorphic projective indecomposable SΩ-modules 
and, writing LΩ(λ) for the head of PΩ(λ), the modules LΩ(λ), λ ∈ ζ�p(Ω), form a 
complete set of pairwise non-isomorphic irreducible SΩ-modules (see Section 1).

Lemma 9.1. Let Γ be a Young Sym(n)-subset of the Young Sym(n)-set Ω. Then we have:
(i) PΓ(λ) = fΩ,ΓPΩ(λ), for λ ∈ ζ�p(Γ);
(ii) ∇Γ(λ)K = fΩ,Γ∇Ω(λ)K , for λ ∈ ζ�(Γ); and
(iii) fΩ,ΓLΩ(λ) = LΓ(λ) for λ ∈ ζ�p(Γ).

Proof. (i) For λ ∈ ζ�p(Γ), we have from (2) that eΓHomG(Y (λ), kΩ) is isomorphic to 
HomG(Y (λ), kΓ) i.e., PΓ(λ) = fΩ,ΓPΩ(λ).

(ii) Similar.
(iii) We first note that in order to show that the pair (Ω, Γ) of Young Sym(n)-sets 

has the desired property (i.e., fΩ,ΓLΩ(λ) = LΓ(λ), for all λ ∈ ζ�p(Γ)) it is enough to 
show that eΓLΩ(λ) �= 0 for all λ ∈ ζ�p(Γ). If that is the case then, for λ ∈ ζ�p(Γ), since 
PΩ(λ) maps onto LΩ(λ) the module fΩ,ΓPΩ(λ) = PΓ(λ) maps onto the non-zero simple 
module fΩ,ΓLΩ(λ). But PΓ(λ) has simple head LΓ(λ) and hence fΩ,ΓLΩ(λ) = LΓ(λ).

Suppose that Ω = I = I(n, n) and Γ ⊆ I(n, n). We take ΛΩ = Λ(n, n) and, for 
α ∈ Λ(n, n), take Oα,I to the set of all i ∈ I with content α. We take ΛΓ to the set of all 
α ∈ I such that Oα,I ⊆ Γ and Oα,Γ = Oα,Ω, for α ∈ ΛΓ. Then, for λ ∈ Par(n) we have 
eΓLI(λ) �= 0 if and only if ξμLI(λ) �= 0, for some μ ∈ ζ(Γ) and the condition for this is 
λ ∈ ζ�p(Γ), by [6, Section 3, Remark]. Thus the pair (Ω, Γ) has the desired property.

Now suppose that ζ�p(Ω) = ζ�p(Γ). Then SΩ and SΓ have the same number of 
isomorphism classes of irreducible modules. Hence fΩLΩ(λ) is a non-zero irreducible SΓ-
module, for all λ ∈ ζ�p(Ω) = ζ�p(Γ), by [12, (6.2g) Theorem]. Thus the pair (Ω, Γ) has 
the desired property. Note that this applies in two important cases.

In the first we may take Γ = I = I(n, n) and Ω any Young Sym(n)-set containing I.
We shall say that a Sym(n) is basic if for each λ ∈ ζ(Ω) there is only one orbit con-

taining an element with point stabilizer Sym(λ). In the second case we take Ω arbitrary 
and Γ ⊆ Ω any basic Sym(n)-subset.

We now consider the general case. We take Γ0 ⊆ Γ to be a basic Sym(n)-subset. 
Suppose that the pair (Ω, Γ0) has the desired property. Then, for λ ∈ ζ�p(Γ) = ζ�p(Γ0)
we have fΓ,Γ0fΩ,ΓLΩ(λ) �= 0 and hence fΩ,ΓLΩ(λ) �= 0. Hence (Ω, Γ) has the desired 
property.

Thus we may assume that Γ is basic. Now choosing a basic Sym(n)-subset Ω0 of Ω
containing Γ and repeating the argument we get that it is enough to know that (Ω0, Γ)
has the desired property. Thus we may assume that Γ ⊆ Ω ⊆ I. But now, from the first 
case considered above we know that, for λ ∈ ζ�p(Γ) we have fI,ΩLI(λ) = LΩ(λ) and 
fΩ,ΓfI,ΩLI(λ) �= 0. Hence fΩ,ΓLΩ(λ) �= 0 for all λ ∈ ζ�p(Γ), and we are done. �

We note in passing the following.
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If α and β ∈ ΛΩ are such that Oα and Oβ have a common point stabiliser then for a 
finite dimensional SΩ-module V we have

dim αV = dim βV. (3)

Proof. (i) We set X = ζ�p(Ω). For V ∈ mod(SΩ) we define gα(V ) = dim αV and 
gβ(V ) = dim βV . By additivity of weight space multiplicities on short exact sequences, 
it is enough to prove that gα(V ) = gβ(V ) for V irreducible. We set gα,λ = gα(L(λ)), 
gβ,λ = gβ(L(λ)) and Gα,λ = gα(P (λ)), Gβ,λ = gβ(P (λ)), for λ ∈ X. Now we have

Gα,λ = dim ξαHomSym(n)(Y (λ), kΩ) = dim HomSym(n)(Y (λ), kOα)

and for the same reason Gβ,λ = dim HomSym(n)(Y (λ), kOβ). But Oα and Oβ are iso-
morphic Sym(n)-set so that kOα and kOβ are isomorphic Sym(n)-modules and so 
Gα,λ = Gβ,λ, for all λ ∈ X.

For λ, μ ∈ X we have the Cartan integer cλμ, the multiplicity of LΩ(μ) are a compo-
sition factor of PΩ(λ). Again by additivity we have

Gα,λ = gα(P (λ)) =
∑
μ∈X

cλμgα(LΩ(μ)) =
∑
μ∈X

cλμgα,μ

and Gβ,λ =
∑

μ∈X cλμgβ,μ. Hence we have

∑
μ∈X

cλμgα,μ =
∑
μ∈X

cλμgβ,μ

for all λ ∈ X. Since SΩ is cellular, its Cartan matrix C = (cλμ)λ,μ∈X is non-singular by 
[16, Proposition 1.2] and hence gα,λ = gβ,λ for all λ ∈ X, i.e., gα(V ) = gβ(V ), for all 
irreducible SΩ-modules, as required. �

Note that the same result works over a field of characteristic 0.
To λ ∈ ζ�(Ω) and μ ∈ ζ�p(Ω) we have attached the simple SΩ,K-module ∇Ω(λ)K

and simple SΩ = SΩ,k-module LΩ(λ). We have the natural map SR(Ω) → SΩ,k giving 
rise to an isomorphism k ⊗R SΩ,R → SΩ,k of k-algebras by which we identify k⊗R SΩ,R

and SΩ,k. Let ∇Ω(λ)R be a R-form of ∇Ω(λ)K . Then the multiplicity of LΩ(μ), as 
a composition factor of k ⊗R ∇Ω(λ)R is independent of the choice of R-form and we 
denote it [∇Ω(λ)K : LΩ(μ)].

For λ, μ ∈ Λ+(n, r) we have the multiplicity [∇n(λ)K : Ln(μ)]n of Ln(μ) as a compo-
sition factor of a modular reduction of ∇n(λ)K . For N ≥ n we have [∇n(λ) : Ln(μ)]n =
[∇N (λ) : LN (μ)]N , by [12, (6.6e) Theorem (i)]. For partitions λ, μ of the same degree we 
write simply [λ : μ] for the decomposition number [∇n(λ) : Ln(μ)]n, where n is at least 
the number of parts of λ and of μ.

We shall show that these numbers are also the decomposition numbers for the endo-
morphism algebra of an arbitrary Sym(n)-set.
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Proposition 9.2. Let Ω be a Young Sym(n)-set. Then for λ ∈ ζ�(Ω) and μ ∈ ζ�p(Ω) we 
have

[∇Ω(λ)K : LΩ(μ)] = [λ : μ].

The result holds for Ω = I = I(n, n) by definition. We now argue by repeated appli-
cation of the theorem of T. Martins, [12, (6.6d) Theorem]. Suppose that Ω is a Young 
Sym(n)-set containing I = I(n, n). Then ζ(Ω) = ζ(I) = ζ�(Ω) = ζ�(I) = Par(n) and 
for λ, μ ∈ Par(n) we have

[∇Ω(λ)K : LΩ(λ)] = [fΩ,I∇(λ)K : fΩ,ILΩ(μ)] = [∇I(λ)K : LI(μ)]

by [12, (6.6d) Theorem], and this we already know to be [λ : μ]. Now suppose that Ω is 
arbitrary and choose Ω̃ a Young Sym(n)-set containing Ω and I. Then we have shown 
[∇Ω̃(λ)K : LΩ̃(μ)] = [λ : μ], for λ ∈ ζ�(Ω), μ ∈ ζ�p(Ω), and hence

[∇Ω(λ)K : LΩ(μ)] = [fΩ̃,Ω∇Ω̃(λ)K : fΩ̃,ΩLΩ̃(μ)]

= [∇Ω̃(λ)K : LΩ̃(μ)]

= [λ : μ]

by [12, (6.6d) Theorem] again.
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