期刊论文详细信息
JOURNAL OF ALGEBRA 卷:567
On the symmetric and exterior powers of Young permutation modules
Article
Jiang, Yu1 
[1] Nanyang Technol Univ, Div Math Sci, SPMS MAS 05-34,21 Nanyang Link, Singapore 637371, Singapore
关键词: Complexity;    Symmetric power;    Exterior power;    Symmetric group;    Young permutation module;   
DOI  :  10.1016/j.jalgebra.2020.09.036
来源: Elsevier
PDF
【 摘 要 】

Let n be a positive integer and lambda be a partition of n. Let M-lambda be the Young permutation module labelled by lambda. In this paper, we study symmetric and exterior powers of M-lambda in positive characteristic case. We determine the symmetric and exterior powers of M-lambda that are projective. All the indecomposable exterior powers of M-lambda are also classified. We then prove some results for indecomposable direct summands that have the largest complexity in direct sum decompositions of some symmetric and exterior powers of M-lambda. We end by parameterizing all the Scott modules that are isomorphic to direct summands of the symmetric or exterior square of M-lambda and determining their corresponding multiplicities explicitly. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2020_09_036.pdf 834KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次