期刊论文详细信息
JOURNAL OF ALGEBRA 卷:527
Degree four cohomological invariants for certain central simple algebras
Article
Sivatski, A. S.1 
[1] Univ Fed Rio Grande do Norte, Dept Matemat, Natal, RN, Brazil
关键词: Brauer group;    Biquaternion;    Cup-product;    Cyclic elements;    Divided power operation;   
DOI  :  10.1016/j.jalgebra.2019.01.037
来源: Elsevier
PDF
【 摘 要 】

Let F be a field, char F not equal 2. In the first section of the paper we prove that if A = (a,b) + (c, d) is a biquaternion algebra divisible by 2 in the Brauer group Br(F), and <<-1, - 1 >>(F) = 0, then the symbol (a, b, c, d) is an element of H-4 (F, Z/2Z) is an invariant, i.e. it does not depend on the decomposition of A into a sum of two quaternions. In the second section we construct an invariant p in H-4(F, Z/2Z) for elements C+alpha is an element of Br-4(F), where C is cyclic of degree at most 4, and alpha is an element of Br-2(F). In the case root-1 is an element of F* we extend the invariant p to elements D + alpha is an element of Br-4(F), where ind D <= 4 and alpha is an element of Br- 2(F). (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2019_01_037.pdf 303KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次