期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:165 |
Quartic polynomials and the Hasse norm theorem modulo squares | |
Article | |
Sivatski, A. S.1  | |
[1] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil | |
关键词: Brauer group; Cup-product; Field extension; The u-invariant; The Hasse norm theorem; | |
DOI : 10.1016/j.jnt.2016.01.022 | |
来源: Elsevier | |
【 摘 要 】
Let F be a field, char F not equal 2, L/F a quartic field extension. Define by G(L/F) the group of elements r is an element of F* such that D boolean OR (r) = 0 for any regular field extension K/F and any D is an element of 2Br(KL/K). We show that G(L/F) = F*2N(L)/L-F*. As a consequence we prove that the Hasse norm theorem modulo squares holds for L/F. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2016_01_022.pdf | 281KB | download |