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Let F be a field, charF �= 2, L/F a quartic field extension. 
Define by GL/F the group of elements r ∈ F ∗ such that 
D ∪ (r) = 0 for any regular field extension K/F and any 
D ∈ 2Br(KL/K). We show that GL/F = F ∗2NL/FL∗. As a 
consequence we prove that the Hasse norm theorem modulo 
squares holds for L/F .
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1. The annihilator group for a quartic field extension

In the present paper we investigate universal annihilators of the 2-torsion part of 
the relative Brauer group for quartic field extensions. More precisely, let F be a field, 
charF �= 2, L/F a finite field extension. Recall that a field extension E/F is called regular 
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if F is algebraically closed in E, and E/F is separable [L, Ch. 8, §4]. Define by GL/F

the group of elements r ∈ F ∗ such that D ∪ (r) = 0 for any regular field extension K/F

and any D ∈ 2Br(KL/K) (here ∪ is the cup-product H2(K, Z/2Z) ⊗ H1(K, Z/2Z) →
H3(K, Z/2Z)).

In general the problem of computation of the group GL/F seems to be very hard, 
because usually it is difficult to describe the group 2Br(KL/K), or, at least, some non-
trivial elements in this group. However, if r = NL/F (s) for s ∈ L∗, and D ∈ 2Br(KL/K), 
then by the projection formula

D ∪ (r) = D ∪ (NKL/K(s)) = NKL/K(DKL ∪ (s)) = 0.

Therefore, F ∗2NL/FL
∗ ⊂ GL/F . This observation and the examples below make reason-

able the following

Conjecture. For any finite field extension L/F one has GL/F = F ∗2NL/FL
∗.

We do not know any counterexample to this equality. On the other hand, there are 
certain cases, which confirm the conjecture. We consider them one by one.

1) Let L/F be an extension of odd degree n. Then, since 2Br(KL/K) = 0 and F ∗n ⊂
NL/FL

∗, we get GL/F = F ∗2NL/FL
∗ = F ∗.

2) Let L = F (
√
a) be a quadratic extension, x an indeterminate. Assume that r ∈ F ∗ is 

such an element that (a, x) ∪ (r) = 0. Then r ∈ NL/FL
∗, hence GL/F = NL/FL

∗ =
F ∗2NL/FL

∗.
3) Let L = F (

√
a, 
√
b)/F be a biquadratic extension. Similarly to case 2)

GF (
√
a,
√
b)/F ⊂ NF (

√
a)/FF (

√
a)∗ ∩NF (

√
b)/FF (

√
b)∗.

On the other hand, it is well known that

NF (
√
a)/FF (

√
a)∗ ∩NF (

√
b)/FF (

√
b)∗ = F ∗2NF (

√
a,
√
b)/FF (

√
a,
√
b)∗,

which implies that as in the previous cases GL/F = F ∗2NL/FL
∗.

Remark. The case of a multiquadratic field extension L = F (√a1, . . . , 
√
an) (n ≥ 3)

is much subtler. Obviously, F ∗2NL/FL
∗ ⊂ GL/F ⊂

⋂
1≤i≤n

NF (√ai)/FF (√ai)∗. However, 

generally F ∗2NL/FL
∗ �=

⋂
1≤i≤n

NF (√ai)/FF (√ai)∗, and it is unclear how to prove (dis-

prove) the conjecture even in the case of a triquadratic extension.

4) Let L/F be a cyclic Galois field extension (a generalization of example 2)). Then 
GL/F = F ∗2NL/FL

∗ as well.
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Indeed, in view of example 1) we may assume that [L : F ] = 2n. Let χ : Gal(L/F ) →
Q/Z be a character of order 2n, z an indeterminate. Let further L0 = F (θ) be an 
intermediate field F ⊂ L0 ⊂ L such that [L : L0] = 2. Consider the element A =
χ ∪NL0(z)/F (z)(z − θ) ∈ Br(L(z)/F (z)). Clearly, 2A = 0.

Let r ∈ GL/F , so χ ∪ NL0(z)/F (z)(z − θ) ∪ (r) = 0. Taking the residue at z − θ, we 
get that χ ∪ (r)L0 = 0. Since χ2 : Gal(L0/F ) → Q/Z is a character of order n, and the 
extension L0/F is cyclic, we get that χ ∪ (r) = χ2 ∪ (s) for some s ∈ F ∗ [GS, Cor. 4.7.4]. 
Therefore, χ ∪ (rs−2) = 0, which implies that rs−2 ∈ NL/FL

∗ [GS, Cor. 4.7.4]. Thus, 
r ∈ F ∗2NL/FL

∗.
In this section we prove the conjecture for all field extensions of degree 4. As an appli-

cation we prove in section 2 the Hasse norm theorem modulo squares for these extensions.
A few words about our notation. All the fields below are assumed to be of characteristic 

distinct from 2. A quadratic form over a field will be called merely form. The diagonal 
form with coefficients a1, . . . , an is denoted by 〈a1, . . . , an〉. Frequently, slightly abusing 
notation, we will identify the form and the corresponding element in the Witt ring W (F ). 
For instance, the equality ϕ = 0 means that the form ϕ is hyperbolic. The symbol (a, b)
stands for the class in the Brauer group Br(k) of the quaternion algebra with generators 
i, j, and the relations i2 = a, j2 = b, ij = −ji. The group 2Br(k) is the 2-torsion part of 
Br(k), and Br(l/k) is the kernel of the restriction map Br(k) → Br(l).

For a field E and n ≥ 0 put Hn(E) = Hn(E, Z/2Z). In particular, we have H1(E) =
E∗/E∗2, and H2(E) = 2Br(E). For any a ∈ E∗ denote by (a) the corresponding element 
in H1(E). For any a1, . . . , an ∈ E∗ put (a1, . . . , an) = (a1) ∪ · · · ∪ (an) ∈ Hn(E).

One of the main tools used below is the exact cohomology group sequence for the 
rational function field [GS, 6.9.3]

0 → Hn(F ) res−−→ Hn(F (x))
∐

∂p−−−−→
∐

p∈A1
F

Hn−1(Fp) → 0.

We consider here a point p ∈ A1
F as a monic irreducible polynomial over F , Fp =

F [x]/p is the corresponding residue field, and ∂p : Hn(F (x)) → Hn−1(Fp) is the residue 
homomorphism. Recall that if fi ∈ F [x], then

∂p(f1, . . . , fn) =
{

0 if all fi are not divisible by p

(f1, . . . , fn−1) if vp(fn) = 1 and vp(fi) = 0 for 1 ≤ i ≤ n− 1

Define also ∂∞(f1, . . . , fn) = ∂u(f1(u−1), . . . , fn(u−1)), where u = x−1.
First we consider the case of tower of two quadratic extensions, which is crucial in the 

proof of the general case.

Proposition 1.1. Let F be a field, u, v, w ∈ F , x an indeterminate, L = F (
√

v + 2w
√
u)

a tower of two quadratic extensions. Then

1) If a ∈ F ∗ and (ux2 + vx + w2, −x, a) = 0, then a ∈ F ∗2NL/FF
∗.

2) GL/F = F ∗2NL/FF
∗.
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Proof. Note first that 1) implies 2), since by [LLT, Th. 3.9] (ux2 + vx + w2, −x) ∈
2Br(L/F ). To verify 1) consider any a ∈ F ∗ such that (ux2 + vx +w2, −x, a) = 0. Then

(a, u) = ∂∞(a,−x, ux2 + vx + w2) = 0.

Therefore, we may suppose that a = NF (
√
u)/F (α +

√
u) = α2 − u for some α ∈ F . 

Obviously, to show that a ∈ F ∗2NL/FL
∗ it suffices to find an element r ∈ F ∗ such that 

(α +
√
u)r ∈ NL/F (

√
u)L

∗. Indeed, if (α +
√
u)r = NL/F (

√
u)(z), where z ∈ L∗, then

ar2 = NF (
√
u)/F ((α +

√
u)r) = NL/F (z) ∈ NL/FL

∗,

and we are done.
Let us consider the norm form

(x1 + y1
√
u)2 − (v + 2w

√
u)(x2 + y2

√
u)2 = f1 + f2

√
u,

where

f1(x1, y1, x2, y2) = x2
1 + uy2

1 − vx2
2 − uvy2

2 − 4uwx2y2,

f2(x1, y1, x2, y2) = 2x1y1 − 2vx2y2 − 2w(x2
2 + uy2

2).

Notice that, since v + 2w
√
u /∈ F (

√
u)∗2, the forms f1 and f2 have no common 

zero. It suffices to show that the form f1 − αf2 is isotropic. Indeed, if this is the 
case, then there exists a vector (x1, y1, x2, y2) �= 0 such that f1(x1, y1, x2, y2) = αr

and f2(x1, y1, x2, y2) = r for some r ∈ F ∗, hence (α +
√
u)r = NL/F (

√
u)(z), where 

z = x1 + y1
√
u + (x2 + y2

√
u)
√

v + 2w
√
u ∈ L∗.

The matrix of the form f1 −αf2 is 

⎛
⎜⎜⎝

1 −α 0 0
−α u 0 0
0 0 −v + 2wα −2uw + vα

0 0 −2uw + vα −uv + 2uwα

⎞
⎟⎟⎠. Hence

f1 ⊥ −αf2 � 〈1,−(α2 − u)〉 ⊥ (−v + 2wα)〈1,−(α2 − u)(v2 − 4uw2)〉.

The assertion that the form f1 − αf2 is isotropic is equivalent to the equality
(α2 − u, v − 2wα)F (

√
v2−4uw2) = 0. We have

(a, v −
√
v2 − 4uw2

2u ) = ∂ux2+vx+w(a,−x, ux2 + vx + w) = 0.

(If the polynomial ux2 +vx +w2 is reducible, i.e. the extension L/F is biquadratic, then 
by ∂ux2+vx+w we mean the residue map at any linear factor of ux2 + vx + w.) Since 
(a, u) = 0, we get (a, 2(v −

√
v2 − 4uw2)) = 0. On the other hand, it can be easily 

checked that since a = α2 − u, the following equality holds:
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(a, 2(v −
√

v2 − 4uw2)) = (a, v − 2wα)F (
√
v2−4uw2) = (α2 − u, v − 2wα)F (

√
v2−4uw2).

This finishes the proof of the proposition. �
Proposition 1.1 can be generalized to arbitrary field extensions of degree 4.

Corollary 1.2. Let F be a field, L/F a field extension of degree 4. Then GL/F =
F ∗2NL/FL

∗.

Proof. Since charF �= 2, the extension L/F is separable, hence we may assume that L =
F [x]/p(x), where the polynomial p(x) = x4+ax2+bx +c is irreducible. By Proposition 1.1
we may assume that the extension L/F has no intermediate subextension, hence the 
resolvent cubic of L/F is irreducible. By [S, Cor. 4] we have (−x, x(x −a)2 − 4cx + b2) ∈
2Br(L(x)/F (x)). Let e ∈ GL/F . In particular, (e, −x, x(x − a)2 − 4cx + b2) = 0. Hence, 
by specialization we get that

(e,−α, α(α− a)2 − 4cα + b2) = 0

for any field extension E/F and α ∈ E. Put K = F [x]/x(x − a)2 − 4cx + b2. It is 
easy to check that the polynomial x(x − a)2 − 4cx + b2 is the resolvent cubic of the 
extension L/F . Therefore, the extension KL/K is a tower of two quadratic extensions, 
say KL = K(

√
v + 2w

√
u), where u, v, w ∈ K (here KL is usual compositum of two 

finite field extensions of F ). We have

(−x, ux2 + vx + w2) ∈ 2Br(KL(x)/K(x)),

where x is an indeterminate. Note that (−x, ux2 + vx +w2)K(x)(
√
d) �= 0 for any d ∈ K∗, 

because otherwise −dx would be a square in the residue field Kux2+vx+w, which is not 
the case.

Therefore, by [S, Cor. 4] there is α ∈ K(x) such that

(−x, ux2 + vx + w2) = (−α, α(α− a)2 − 4cα + b2).

Hence

(e,−x, ux2 + vx + w2) = (e,−α, α(α− a)2 − 4cα + b2) = 0.

Proposition 1.1 shows that e ∈ K∗2NKL/K(KL)∗. Hence

e3 = NK/F (e) ∈ NK/F (K∗2NKL/K(KL)∗) ⊂ F ∗2NKL/F (KL)∗ ⊂ F ∗2NL/FL
∗.

Thus, e = e−2e3 ∈ F ∗2NL/FL
∗, which completes the proof. �
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Corollary 1.3. Let F be a field, L = F [x]/p(x), where p(x) = x4+ax2+bx +c, a, b, c ∈ F . 
Suppose that the F -algebra L is separable. Let f(x) = x(x − a)2 − 4cx + b2, and e ∈ F ∗. 
Then the following conditions are equivalent:

1) e ∈ F ∗2NL/FL
∗.

2) (e, −x, f(x)) = 0.
3) (e, −ξ) = 0 ∈ 2Br(F (ξ)), where ξ is an arbitrary root of f , in the case b �= 0; (e, −ξ) =

0 ∈ 2Br(F (ξ)), where ξ is an arbitrary nonzero root of f , and (e, a2 − 4c) = 0 in the 
case b = 0.

Proof. The equivalence of conditions 2) and 3) follows at once by computing the residues 
of the symbol (e, −x, f(x)). If p is irreducible, then (−x, f(x)) ∈ 2Br((L(x)/F (x)). Hence 
the implication 1) =⇒ 2) follows from Corollary 1.2, while the implication 2) =⇒ 1)
follows from the proof of Corollary 1.2.

If p(x) is a product of polynomials of degree 1 and 3, then by [S, Cor. 4] (−x, f(x)) = 0, 
NL/FL

∗ = F ∗, so in this case the equivalence of 1) and 2) is obvious.
It remains to consider the case where p is a product of two irreducible quadratic 

polynomials. In this case p(x) = (x2 + qx + r1)(x2 − qx + r2), and a straightforward 
computation shows that

f(x) = (x + q2)(x2 + (q2 − 2r1 − 2r2)x + (r2 − r1)2).

The discriminant of the factor g(x) = x2 + (q2 − 2r1 − 2r2)x + (r2 − r1)2 equals 
(q2 − 4r1)(q2 − 4r2). It is easy to check that the polynomial f(x) is separable, 
and ∂g(−x, g(x)) = q2 − 4r1. Hence condition 2) is equivalent to the equality
(e, q2 − 4r1)F (

√
(q2−4r1)(q2−4r2)) = 0, which means that the form

〈1,−(q2 − 4r1),−e, (q2 − 4r2)e〉

is isotropic. On the other hand, clearly, the last condition is equivalent to

e ∈ NF (
√

q2−4r1)/FF (
√

q2 − 4r1)∗NF (
√

q2−4r2)/FF (
√

q2 − 4r2)∗,

which is just condition 1). �
Corollary 1.4. Let K/F be a cubic field extension, K = F (θ), ξ = −θ−1NK/F θ. Then 
NK/F ξ = −b2, b ∈ F ∗. Let f(x) = x(x − a)2 − 4cx + b2 be the characteristic polyno-
mial of ξ. Denote by G the group consisting of all elements v ∈ F ∗ such that (v, θ) ∈
resK/F 2Br(F ). Then G = F ∗2NL/FL

∗, where L = F [x]/p(x), p(x) = x4 + ax2 + bx + c.

Proof. First consider the case where the extension K/F is separable. The assertion
NK/F ξ = −b2, where b = NK/F θ, is obvious. Clearly, there exist unique a, c ∈ F such 
that f(x) = x(x −a)2−4cx +b2 is the characteristic polynomial of ξ. Applying the norm, 
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it is easy to see that the condition (v, θ) ∈ resK/F 2Br(F ) is equivalent to the condition 
(v, θ) = (v, NK/F θ), or, in other words, (v, −ξ) = 0. By Corollary 1.3 the last equality is 
equivalent to v ∈ F ∗2NL/FL

∗, since one can check that p(x) is separable.
If the extension K/F is not separable, then a = c = 0, b �= 0, and, obviously, 

F ∗2NL/FL
∗ = G = F ∗. �

Denote by u(F ) the u-invariant of the field F , i.e. the maximal number n such that 
there exists an n-dimensional anisotropic form over F .

Corollary 1.5. Let F be a field, p(x) ∈ F [x] an irreducible quartic polynomial, L =
F [x]/p(x), e ∈ F ∗, e /∈ F ∗2NL/FL

∗. Assume that the order of the Galois group of p(x)
is divisible by 3. Then there exists a regular field extension K/F such that u(K) = 2 and 
e /∈ K∗2NKL/K(KL)∗.

Proof. By Corollary 1.3

(e,−ξ) �= 0 ∈ 2Br(F (ξ)),

where ξ is an arbitrary root of f . Since the order of the Galois group of p(x) is divisible 
by 3, the extension F (ξ)/F is of degree 3. Let ϕ � 〈1, −v, −w〉, where v, w ∈ F ∗, be an 
anisotropic form. We claim that (e, −ξ)F (ϕ)(ξ) �= 0. Indeed, otherwise

(e,−ξ) = (v, w).

Then

(v, w) = NF (ξ)/F (v, w) = NF (ξ)/F (e,−ξ) = (e, b2) = 0,

a contradiction, since the form ϕ � 〈1, −v, −w〉 is anisotropic.
Thus, we can subsequently split all 3-dimensional forms, coming to a field K such 

that u(K) = 2 and (e, −ξ)K(ξ) �= 0. Applying Corollary 1.3 again, we see that e /∈
K∗2NKL/K(KL)∗. �

In contrast to Corollary 1.5 we have the following

Proposition 1.6. Let F be a field, u(F ) ≤ 2, p(x) ∈ F [x] a separable monic quartic 
polynomial, L = F [x]/p(x). Assume that p(x) is either reducible, or the order of the 
Galois group of p(x) is not divisible by 3. Then F ∗ = NL/FL

∗.

Proof. If p(x) has a linear factor, the claim is obvious. Now suppose that p(x) is a product 
of two distinct irreducible quadratic polynomials, which determine quadratic extensions 
of F , say F (

√
d1)/F and F (

√
d2)/F . Choose any u ∈ F ∗. The form 〈1, −d1, −u〉 is 

isotropic, hence

u ∈ NF (
√
d )/FF (

√
d1)∗ ⊂ NL/FL

∗.

1
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Finally, in the case where p(x) is irreducible, and the Galois group of p(x) is not 
divisible by 3, there is a tower F ⊂ E ⊂ L, where E/F and L/E are quadratic field 
extensions. Since u(F ) ≤ 2, we have u(E) ≤ 2 as well. Hence both norms NL/E and 
NE/F are surjective, which implies that u ∈ NL/FL

∗ for any u ∈ F ∗. �
2. The Hasse norm theorem modulo squares for quartic extensions

In this section we apply Proposition 1.1 and Corollary 1.3 for one arithmetic problem. 
Let F be a global field, and L/F a finite separable field extension. Let Ω(F ) be the set of 
all valuations (archimedian and nonarchimedian) of F . For v ∈ Ω(F ) denote by Fv the 
completion of F with respect to the valuation v. We say that the Hasse norm theorem 
modulo squares holds for the extension L/F if the following property holds:

Let a ∈ F ∗ be such an element that a ∈ F ∗
v

2NL⊗FFv/Fv
(L ⊗F Fv)∗ for each v ∈ Ω(F ). 

Then a ∈ F ∗2NL/FL
∗.

This property was considered in [LW1] and [LW2] for certain Galois extensions. It 
was proved in [LW1] that the Hasse norm theorem modulo squares holds for any multi-
quadratic extension. On the other hand, for any k ≥ 2 examples of Galois extensions with 
Galois group Z/2Z × Z/2kZ such that this theorem does not hold were given in [LW2].

However, to our knowledge the case where the extension L/F is not Galois, was not 
investigated before. Below as a consequence of Proposition 1.1, Corollary 1.3, and the 
classical Hasse norm theorem for quadratic extensions we give two proofs of the following

Theorem 2.1. The Hasse norm theorem modulo squares holds for any quartic field exten-
sion.

First proof. Assume first that L/F is a tower of two quadratic extensions, say

L = F (
√

v + 2w
√
u) = F [x]/p(x),

where p(x) = (x2 − v)2 − 4uw2. Let θ be any root of the polynomial p(x). Put g(x) =
ux2 + vx + w2. We have resFv(x)(θ)/F (x)(θ)(−x, g(x)) = 0. Suppose that e ∈ F ∗ is such 
that e ∈ F ∗

v
2NL⊗FFv/Fv

(L ⊗F Fv)∗ for each v ∈ Ω(F ). Then by the projection formula 
(e, −x, g(x))Fv(x) = 0 for each v ∈ Ω(F ).

Consider the commutative diagram

H3(F (x),Z/2Z)
res

−−−−→
⊕

v∈Ω(F )
H3(Fv(x),Z/2Z)

∂

⏐⏐� ∂

⏐⏐�
⊕
p
H2(Fp,Z/2Z)

res
−−−−→

⊕
p

⊕
w|v

H2((Fp)w,Z/2Z)

where p runs over all monic irreducible separable polynomials over F . We have
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res ◦∂(e,−x, g(x)) = ∂ ◦ res(e,−x, g(x)) = ∂(0) = 0.

The lower horizontal map is injective [CF, Ch. 7], hence ∂(e, −x, g(x)) = 0, which implies 
that (e, −x, g(x)) ∈ resF (x)/F H3(F ). Therefore, we get

(e,−x, g(x)) = resF (x)/F ◦sx(e,−x, g(x)) = resF (x)/F ◦∂x(−x, e,−x, ux2 + vx + w2) = 0.

(Here sx : H3(F (x)) → H3(F ) is the specialization map associated with the zero point. 
We have sx(α) = ∂x((−x) ∪α) for any α ∈ H3(F (x)) [GS, 6.8.6].) Now by Proposition 1.1
e ∈ F ∗2NL/FL

∗.
In the general case let K/F be the resolvent cubic for L/F . Since the extension KL/K

is a tower of two quadratic extensions, we get e ∈ K∗2NKL/K(KL)∗. Hence

e3 = NK/F (e) ∈ F ∗2NKL/F (KL)∗ ⊂ F ∗2NL/FL
∗.

Therefore, e = e3(e−1)2 ∈ F ∗2NL/FL
∗, which proves the theorem. �

Second proof. Let L = F [x]/p(x), p(x) = x4 +ax2 + bx + c, f(x) = x(x −a)2 − 4cx + b2. 
Suppose that e ∈ F ∗ is such that e ∈ F ∗

v
2NL⊗FFv/Fv

(L ⊗F Fv)∗ for each v ∈ Ω(F ). 
Assume that b �= 0. By Corollary 1.3 we get (e, −ξ) = 0 ∈ 2Br(Fv(ξ)) for each root ξ
of f(x). In other words, (e, −ξ) = 0 ∈ 2Br(F (ξ)w) for each w ∈ Ω(F (ξ)). By the Hasse 
norm theorem for quadratic extensions (e, −ξ) = 0 ∈ 2Br(F (ξ)) [CF, Ch. 7]. Now by 
Corollary 1.3 we conclude that e ∈ F ∗2NL/FL

∗.
The case where b = 0 is treated similarly. �
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