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it does not depend on the decomposition of A into a sum of two
quaternions. In the second section we construct an invariant p
in H*(F,Z/2Z) for elements C+a € 4Br(F), where C is cyclic
of degree at most 4, and o € 2Br(F). In the case v/—1 € F*
we extend the invariant p to elements D + a € 4Br(F'), where
ind D < 4 and o € 2Br(F).
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Let F be a field of characteristic different from 2. Let H™(F') be the degree n coho-
mological group of F' with coefficients in Z/2Z, i.e.

H™(F) =

H™F,Z/2Z) = H"(Gal(Fuep/F), Z/21).

In the first section of the paper we prove that if A = (a,b) + (¢, d) is a biquaternion
algebra divisible by 2 in the Brauer group Br(F'), and the Pfister form {(—1,—1)r is
hyperbolic, then the symbol (a,b,c,d) € H*(F) is an invariant, i.e. it does not depend
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on the decomposition of A into a sum of two quaternion algebras. This invariant is well
known if v/—1 € F* and in this case it is equal to vo(A), where 72 is the second divided
power operation oBr(F) — H*(F) (note that if /=1 € F’*, then the whole group Br(F)
is 2-divisible). However, our invariant is defined only for biquaternion algebras, and under
the same hypothesis can hardly be extended to the subgroup of 2-divisible elements of
QBI'(F)

In the second section we construct another invariant in H*(F) for elements D + o €
4Br(F) such that ind D < 4, and « € 3Br(F).

In the proofs of the statements below we use cohomology groups, Milnor’s K-groups
and some rudimentary facts from the theory of quadratic forms over fields. All the needed
information on these objects is contained in the books [3], [6], and [1].

A few words about notation. Let F' be a field, m, n positive integers. Assume that n
is not divisible by char F', and F' contains the group of roots of unity of degree n, which
is denoted by pi,,. The choice of a primitive root of unity &,, determines the isomorphism
Z/nZ =~ u,, under which 1 takes to &,. This isomorphism allows to identify the groups
HY(F,Z/nZ) and H*(F, u,,) = F*/F*". Let a,...,a,, € F*. Consider the cup-product
HYF,Z/nZ7)® - @ HY(F,Z/nZ) — H™(F,Z/nZ). The elements a; € F*/F*" can be
considered as elements of the group H'(F,Z/nZ), provided a primitive root of unity &,
is chosen. The element (a1)U(ag) - - -U(ay,) € H™(F,Z/nZ) is denoted by (a1, . . ., am)n.
If n = 2 we omit the index n in the last symbol and write it merely as (a1, ..., am).

By ,Br(F) we denote the n-torsion of the Brauer group Br(F'). If F' contains the group
of roots of unity of degree n and &, is a fixed primitive root of unity, then by (a,b)¢, €
nBr(F) we denote the class of the symbol algebra of degree n with the generators i
and j, and the relations i = a, j® = b, and ij = &,ji. There is an isomorphism
¢ : oBr(F) ~ H?(F,Z/nZ) taking (a,b)¢, to (a,b),, which permits us to identify the
elements (a,b), € H*(F,Z/nZ) and (a,b)e, € ,Br(F). If n = km and &, € F, then
k(a,b), = (a,b),, € Br(F), where the roots of unity &, and &, are related by the
equality &8 = ¢,,.

For m > 0, let K,,(F) denote the mth Milnor K-group of the field F. As-
sume that &, € F*. The symbols (ay,...,a;), satisfies the same basic relations as
the symbols {ai,...,a,} in K,,(F)/n, hence there exists a natural homomorphism
K, (F)/n — H™(F,Z/nZ) called the norm residue homomorphism, which takes the
symbol {a,...,am,} to the symbol (ay,...,am)n. Suppose that n = 2™ and —1 € F*",
ie. &o, € F*. Let vo : Ko(F)/n — K4(F)/n be the second divided power operation on

K5(F)/n, which is well defined by the rule (>~ a;) = > s, where all a; are symbols
i i<j

in Ko(F)/n ([4], [15]). We call the composition of the second divided power operation

and the norm residue homomorphism

Ko(F)/n — K4(F)/n — HY(F,7/nZ)

the second divided power operation as well, and also denote it by <. Moreover, the
norm residue homomorphism Ko(F)/n — H?(F,Z/nZ) is bijective ([9], Th. 11.5),
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which permits us to define in an obvious way the second divided power operations
H?(F,Z/nZ) — K4(F)/n and H*(F,Z/nZ) — H*(F,Z/nZ), which also will be de-
noted by <. Obviously, the divided power operations commute with field extension
homomorphisms.

For every m > 0 there is an operation w,, : W\(F) — H™(F,Z/27) on the Witt-
Grothendieck ring W(F), which is called the mth Stiefel-Whitney map. These maps
satisfy equalities wy = 1 and

wp (a1, ... a,)) = Z (@i, Qigy---a;)

i1 <t <--<ipm

for m > 1 and a; € F*. It readily follows that w,,(a + ) = > w;(a)w;(5) for any
i+g=m
o, B € W(F) ([1], §5).

If L/F is a finite field extension, then by res;/r and Ny ,p we denote the restriction
and the norm maps for the Brauer group, Milnor’s K-group, etc. The composition Ny ,ro
resz,/p is multiplication by the degree of the extension L/F'.

Finally, we assume that the characteristic of any field below is different from 2.

1. A degree four invariant for biquaternion algebras

We begin with the following theorem, which is an application of the chain lemma for
biquaternion algebras from [13].

Theorem 1.1. Let F' be a field, let A be a biquaternion. Consider two decompositions of
A into a sum of two quaternions:

A= (a1,b1) + (c1,d1) = (a2,b2) + (c2,d2).
Then
(al,bl,c1,d1) — (ag,bg,CQ,dg) S (—1, —1) U HQ(F) + (—1) U [A] U Hl(F)

Proof. Recall the definition of equivalent decompositions of A into sum of two quaternion
algebras ([13]). Let A = D1+ D} = Do+ D), be two decompositions of A into a sum of two
quaternion algebras (the signs = and + will always mean equality and addition in the
Brauer group of F'). We call these decompositions equal if D; = Dy and D} = D}, and
simply-equivalent if there exist elements z,y,a,c € I such that D1p(, /) = Dj F(J/E) = 0
and

Dy = Dy + (a,2? — acy®), Dy = D} + (c,a” — acy?). (+)

Notice that, since (ac, x> —acy?) = 0, we have D1+ D} = Dy+ D} as soon as the equalities
(*) hold. We say that two decompositions of A are equivalent if they can be connected
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by a chain of decompositions in such a way that every two neighboring decompositions
in this chain are simply-equivalent. It has been proved in ([13], Prop. 1) that any two
decompositions of A are equivalent to one another. Thus, it suffices to verify that if

A= (a,b) + (¢,d) = (a,b(z® — acy?)) + (c,d(z® — acy?)),
then
(a,b(x® — acy?),c,d(x* — acy®)) — (a,b,¢,d) € (—1,-1)H?*(F) + (1) U [A]U H*(F).

Obviously, we may assume that y # 0. Put ¢t = zy~!. We have

(a,b(x? — acy?), ¢, d(z? — acy®)) — (a,b, ¢, d) = (a, —bd, c,d(t* — ac)) — (a,b,c,d
(a, —bd, c,d) + (a, —bd, c,t* — ac) — (a,b,c,d

) = (a, —bd, c,t* — ac
(a,—bd,a,t* —ac) = (=1, —=bd, a,t* — ac) = (=1, —1,a,t* — ac) + (

):
) =
—1,bd,a,t* — ac) =
(-1,-1,a,t> — ac) + (—1,bd, a,t* — ac) + (— ) =

(-1, ac,d,t? — ac
(—1,—1,a,t* — ac) + (—1,1* — ac) U [A],

which proves what we need. (In this computation we used the equalities (u,vivy) =
(u,v1) + (w,v2), (u,—u) = 0, for u,v1,vy € F*, and the equalities (a,bd) + (ac,d) =
(a,b) + (c,d) and (ac,t?> — ac) = 0.)

Second proof. We will give another proof of the above theorem, which was proposed
by the referee. By Jacobson’s theorem ([2]) there exists A € F™* such that

<a17 bl7 _a1b17 —C1, _d17 Cld1> jad )\<Cl2, b27 _a2b27 —C2, _d27 02d2>-
Computing the 4th Stiefel-Whitney invariant of both sides, we easily get the equality
(_17 _17 ai, bl) + (ah b17 C1, dl) = (_13 _)\7 as, b?) + (_17 >\u C2, d2) + (a27 b27 C2, d2)7
which is equivalent to
(a1,b1,c1,d1) = (a2, b2, ¢2,d2) = (=1, =1) U [(a1,b1) + (a2, b2)] + (-1 ) UAU(A). O
Corollary 1.2. Let F be a field such that (—1,—1)p = 0 (for instance, any field of
positive characteristic). Let A be a biquaternion algebra over F such that (—1) U A =
0 € H3(F). Then the element (a,b,c,d) € H*(F) does not depend on the decomposition
A = (a,b)+(c,d) of A into a sum of two quaternion algebras. In particular, (a,b,c,d) =0

if ind(A) < 2.

Proof. Obvious, in view of Theorem 1.1. O
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Remark. Under the hypothesis of Corollary 1.2 we will call the invariant (a,b,c,d) €
H*(F) for the biquaternion A = (a, b) + (¢, d) the second divided power operation ,(A)
on A, since when v/—1 € F* this is really the case. However, the hypothesis of Corol-
lary 1.2 does not permit to define v2 on the 2-divisible part of the group Br(F’) by the
same formula as in the case /—1 € F*. For instance, consider the decomposition of the
trivial algebra as (a,b) + (a,c¢) + (a,bc) = 0. Then, mimicking the computation of vz of
the left-hand part of the last equality in the case v/—1 € F*, we get

(av ba a, C) + (a’7 b7 a, bC) + (CL,C, a, bC) = (a‘7 b7a7 C) + (a, bC, a, bC) =
(_17a'ab7 C) + (_17 _170'7 bC) = (_17a‘7b7 C) 7é 07

if /=1 ¢ F*, and a, b, ¢ are indeterminates.

Let F' be a field such that (—1,—1)p = 0. Let D1, D2 be biquaternion algebras over
F such that Dy + D5 is a biquaternion algebra as well, and (—=1) UD; = (=1)UDy = 0.
It would be interesting to determine if vo(D; + Ds) = 72(D1) 4+ v2(D2) + D1 U D3 just
as in the case when v/—1 € F*. We do not know the answer in the general case, but at
least it is positive in the following two cases, as we show in the following

Corollary 1.3. Let F', D1, Dy be as above. Assume additionally that either

a) there exists a quaternion Q such that D1 + Q, Dy + Q are quaternions, or
b) Dy and Dy have a common biquadratic splitting field extension.

Then vo(D1 + D3) = v2(D1) + v2(D2) + D1 U Ds.
Proof. In both cases the pair (Dj, D3) can be parametrized. In case a) we have D; =

(a,b) + (c1,d1), D2 = (a,b) + (c2,d2) for some a,b,c;,d; € F*. Hence D1 + Dy =
(c1,d1) + (c2,dz), so v2(D1 + D3) = (¢1,d1, ¢c2,dz2). On the other hand,

Y¥2(D1) +72(D2) + D1 U Dy = (a,b, c1,dy) + (a,b, c2, d2)+
(aabaa7b) + (a7b7 cl7d1) + (a7b7 027d2) + (clad17027d2) = (Cl7d17027d2)7
since (a, b, a,b) = (—1,—1,a,b) = 0.
In case b) there are some a,b,ci,dy,ca,da € F* such that Dy = (a,c¢1) + (b, dy),
Dy = (a,c2) + (b,da) ([7], Prop. 5.2). Therefore,
Dy + Dy = (a,clcg) + (b, d1d2), and
72(-D1 + D2) = (a7 bu C1C2, dle) = (a7 b7 C1, dl) + (a7 b7 Cl7d2) + (a7 b7 C2, dl) + (au b7 C2, d?)

On the other hand,



342 A.S. Sivatski / Journal of Algebra 527 (2019) 337-347
72(D1> + 72(D2) + Dl U D2 = (a7 bu clvdl) + (a7 b7 C2, d2)+
(a,c1,a,¢2) + (a,c1,b,da) + (b,di, a,c2) + (b, di, b, dz).
Therefore, the desired equality is equivalent to the equality (a,ci1,a,c2) = (b, dy, b, d2),

ie. to (—1,a,c1,c2) = (—1,b,d1,da). To prove the last equality note that by hypothesis
we have (—1,a,c¢1) = (—1,b,d;), which implies

(—1,a,c1)) = (=1,b,dv)) € W(F). (%)

Similarly,

<<—1,a,02>> = <<_1’b7d2>>' (**)

It follows from (*) and (xx) that
{(—1,a,c1e0) = {(—1,b,d1d2)). ()

Moreover, (fer) + ((ea)) — ierea) = (1, o)), and similarly, (dy) + (dz)) — (dada)) =
{(d1,d2)). The equality (*) + (k) — (k%) is just (—1,a,c1,¢c0) = {(—1,b,dy1,da)),
which implies {—1,a,c1,c2} = {—1,b,d1,d2} € K4(F)/2, and finally, (—1,a,c1,c2) =
(—1,[), dl,dg). O

Remark. Consider the case ind(D; 4+ D2) = 2 in Corollary 1.3. Then condition a) implies
condition b). Indeed, assume that

D, = (a,b) + (Cl,dl), Dy = (a,b) + (Cg,dg).
Then, since ind(D; + D3) = 2, the quaternion algebras (c;,d;) and (cq,ds) have a
common slot, say, s. Then F'(/a,/s) is a common splitting field for D; and Ds.
However, condition b) does not necessarily hold if ind(D; + Ds) = 2 ([12], Prop. 3),

which, in its turn, implies the same for condition a).

Finally in this section we give a necessary condition for the biquaternion algebra A
to be cyclic.

Proposition 1.4. Under the hypothesis of Corollary 1.2 assume that A is cyclic. Then

Proof. Assume A = a U x for some character x of order 4, and 2y corresponds to an
element [ € F*/F*?. Then (a,l) = a U2y = 0. On the other hand,

Apja) = (Va)> Ux = Vau2x = (Va,l).
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Hence Ap(, /z) = (b,1) for some b € F* ([14], Prop. 2.6). It follows that A = (a,c) + (b,1)
for some ¢ € F*. Therefore, v2(A) = (a,¢,b,1) =0, since (a,]) =0. O

Question. Assume that y5(A) = 0. Is A cyclic? In [11] it was proved that this is the case

if V—1€ F*.
2. A degree four invariant for certain elements of 4Br(F)

Let F be a field, let A € 4Br(F) be an algebra such that ind(24) < 2. In this section
we introduce an invariant p(A) with values in H*(F). To this end note that by ([7],
Cor. 5.14) 2A = 2C for some cyclic element C' of degree at most 4, hence A = C' + « for
some a € 9Br(F').

Theorem 2.1. The element p(A) := (2A) U a does not depend on the presentation A =
C + «, hence it is an invariant of A.

Proof. We give the proof proposed by the referee. The original proof is longer and more
complicated.

Assume that A = C1+a; = Co+ag, where C; = x;Uz; (x; € HY (G, Z/AZ), z; € F*),
and 2a; = 0 for ¢ = 1,2. By hypothesis, 24 = 2C; = 2C} is a quaternion algebra. The
common slot lemma yields z € F'* such that

2x1Uz1 =2x1Uz=2x2Uz=2x2U 22, (1)
hence
Cr—Cy=x1U(221) — x2 U (222) + (x2 — x1) U 2.

From (1) it follows that 2y; U (221) = 0, hence x;1 U (zz1) is a biquaternion algebra. The
character 2y corresponds to an element a; € F*/F *2_ Obviously, the element x; U (221)

is split by F( /a1, /zz1), hence
x1U (z21) = (a1, 21) + (221, 41)

for some z1,y; € F*.
Likewise, if the character 2y corresponds to an element @3 € F*/F*?, then there are
T2,%Y2,%3,y3 € F'* such that

X2 U (222) = (a2, z2) + (222,92), (X2 —x1) Uz = (a1a2,x3) + (2,y3).
This implies

as —oq =Cy — Cy = (a1, 1) + (221,91) + (a2, 22) + (222, 92) + (a1a2, x3) + (2,y3).
(2)
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Since 24 = 2C} = (a1, 1), and a4 is a sum of two squares (because a1 = 2x1), it follows
that (24) U (a1) = (—1,a1,2) = 0. Similarly, (2A4) U (a2) = 0. Moreover, (1) yields
(a1,2z1) = (ag,zz2) = 0, hence (24) U (zz1) = (24) U (z22) = 0. Finally, since 24 =
(a1, z), we have

(2A) U (2) = (a1,2,2) = (a1,—1,2) = 0.
Therefore, (2A) U (ag — 1) = 0 in view of (2), which completes the proof. O
If v/—1 € F* Theorem 2.1 can be a bit strengthened.

Proposition 2.2. Under hypothesis of Theorem 2.1 assume additionally that /—1 € F*,
and A =D + 3, where ind D < 4, 8 € 9Br(F). Then p(A) = (24) U 8. In general p(A)
is not zero.

Proof. First consider the following particular case.

Lemma 2.3. Let F be a field, /—1 € F*, Q a quaternion algebra over F. Let the element
D € 4Br(F) be such that ind D = ind(D + Q) = 4. Then (2D)UQ =0 € H*(F).

Proof. By Risman’s theorem ([10]) there exists a quartic extension L/F such that
Dy = Qp = 0. We may assume that F' has no proper odd degree extension. Then

L = F(y/z +y+/a) for some x,y,a € F, hence we have Dp( 5 = (v + yv/a,p + ¢/a)
and Qr( /) = (v +yva,p1 + q1v/a) for some p, ¢, p1,q1 € F. By the projection formula
we get

(2D)UQ = Np(ya),r(Dr(ya) U Q = Nr(ya)/r(Dr(ya) U Qr(va)) =
Np(yayr(T +yva,z +yva,p+qva,pi + q1v/a) =0,

since (z +yva,z +yva) = (-1, 2 +ya)=0. O

We return to the proof of Proposition 2.2. By ([8], Th. 1.3) we have D = C' + @,
where C' is cyclic of degree at most 4, and @ is a quaternion algebra. In particular,
A=C+8+Q.

By Lemma 2.3 (24) UQ = (2D) U Q = 0, hence

p(A)=(24) U (B+Q)=(24)Up.

To give an example of an algebra A with p(A) # 0, consider any field k with v/—1 € k*,
and put F = k(u,v,z,y), where u, v, z,y are indeterminates. Then p(A) = (u,v,z,y) #
0, where A = (u,v)s4 + (z,y). This completes the proof of Proposition 2.2. O
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Corollary 2.4. Under hypothesis of Lemma 2.3 the division algebra associated with the
element 2D + Q is cyclic.

Proof. Let mp and mg be the Pfister forms associated with the quaternion algebras 2D
and . Following the proof of Lemma 2.3, it is easy to see that mp ® mg = 0. Now the
result follows from ([11], Th. 3). O

Remark. One cannot expect an invariant similar to p for elements A = D+ a, where
D € 4Br(F), ind D < 8, and a € 3Br(F). Indeed, let, for instance, F' = k(x,y), where

x,y are indeterminates, a = (x,y), D € 4Br(k), ind D = 4, 2D # 0, and D=D+a.
Then, clearly, ind D =8, and (2D) Ua # 0= (2D)UO.
Lemma 2.3 remains valid even if /—1 ¢ F*. However, we omit the proof of this result,

since it is a bit technical, and we do not need it in the sequel.

Next we compare the invariants p(4) = (2D) Ua € H*(F) and the second divided
power operation vy5(A) € K4(F)/4, provided & € F*. To do this we need the following

Lemma 2.5. Let F' be a field, £ € F*, A € Br(F), ind A = 4.
Let further vo : Ko(F)/4 — K4(F)/4 be the second divided power operation. Then
72(4) = 0.

Proof. Let ¢ : H*(F,Z/27) — H*(F,Z/4Z) be the homomorphism induced by the
natural embedding Z /27 — Z /4Z. By ([8], Th. 1.3)

A= (a,b)4+ (c,d) = (a,b)s + (c,d*)4

for some a,b,c,d € F*, hence v2(A) = (a,b,c,d?)y = p(a,b,c,d). On the other hand,
(a,b,c,d) =0 by Lemma 2.3. O

In fact Lemma 2.5 is a particular case of the following

Proposition 2.6. Let F be a field, &g € F*, and A = D+a«, where D € 4Br(F), ind D < 4,
a € 9Br(F). Then o(p(A)) = y2(A).

Proof. Let D =3 (u;,v;),, « =) (a;,b;). We have

T

2(A) = 72(D) + () + (3 (uiyvi) ) U (a5,82),) = > (i, v5,05,b3)

i J 2

since v2(D) = 0 by Lemma 2.5, and

’)/Q(Oé) = Z (ai,b?,aj,b§)4 = 42 (ai,bi,aj,bj)4 =0.
1.7

(]
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On the other hand, p(4) = (2D) U« = Y (u;, vs, aj, b;). The equality ¢(u;,v;,a;,b;) =
0]
(us, v, aj, b?)4 implies the claim. O

Remark. Assume that A = D 4+ a € 4Br(F), where ind D < 4, o € 2Br(F). We do
not know if necessarily p(A) = (2D) U « if v/—1 ¢ F*. This would be true if there
were a chain C = Dy, Dq,...,D, = D with a cyclic C, and D; € 4Br(F), ind D; < 4,
ind(D; — D;—1) = 2. Indeed, in this case we have for 5 =D — C

2DU 5 = (2D)U(D— €)= 3 2Ds1) U (Ds — Dy1) = 0

in view of the remark after Corollary 2.4. Hence
(2D)Ua = (2C) U (a+ ) = p(A).

However, it seems to be unknown whether such a chain always exists.

Note also that the invariant 9 for biquaternions from Corollary 1.2 can be expressed
via p in the following way. Let A = (a,b) + (¢,d). Assume that (—1,—1)r = 0 and
(—=1) U A = 0. There exists a decomposition A = (a1,b1) + (c1,d1), where (—1,a1,b1) =
(=1,¢1,d1) = 0 ([5], Lemma 1.3). Hence (a1,b1) = 2C for some cyclic C, ind C' < 4, and

Y2(A) = (a1,b1,c1,d1) = p(C + (c1,dv)).
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