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Let F be a field, charF �= 2. In the first section of the paper 
we prove that if A = (a, b) + (c, d) is a biquaternion algebra 
divisible by 2 in the Brauer group Br(F ), and 〈 〈−1, −1〉 〉F = 0, 
then the symbol (a, b, c, d) ∈ H4(F, Z/2Z) is an invariant, i.e. 
it does not depend on the decomposition of A into a sum of two 
quaternions. In the second section we construct an invariant p
in H4(F, Z/2Z) for elements C+α ∈ 4Br(F ), where C is cyclic 
of degree at most 4, and α ∈ 2Br(F ). In the case 

√
−1 ∈ F ∗

we extend the invariant p to elements D+α ∈ 4Br(F ), where 
indD ≤ 4 and α ∈ 2Br(F ).

© 2019 Elsevier Inc. All rights reserved.

Let F be a field of characteristic different from 2. Let Hn(F ) be the degree n coho-
mological group of F with coefficients in Z/2Z, i.e.

Hn(F ) = Hn(F,Z/2Z) = Hn(Gal(Fsep/F ),Z/2Z).

In the first section of the paper we prove that if A = (a, b) + (c, d) is a biquaternion 
algebra divisible by 2 in the Brauer group Br(F ), and the Pfister form 〈 〈−1, −1〉 〉F is 
hyperbolic, then the symbol (a, b, c, d) ∈ H4(F ) is an invariant, i.e. it does not depend 
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on the decomposition of A into a sum of two quaternion algebras. This invariant is well 
known if 

√
−1 ∈ F ∗ and in this case it is equal to γ2(A), where γ2 is the second divided 

power operation 2Br(F ) → H4(F ) (note that if 
√
−1 ∈ F ∗, then the whole group Br(F )

is 2-divisible). However, our invariant is defined only for biquaternion algebras, and under 
the same hypothesis can hardly be extended to the subgroup of 2-divisible elements of 
2Br(F ).

In the second section we construct another invariant in H4(F ) for elements D + α ∈
4Br(F ) such that indD ≤ 4, and α ∈ 2Br(F ).

In the proofs of the statements below we use cohomology groups, Milnor’s K-groups 
and some rudimentary facts from the theory of quadratic forms over fields. All the needed 
information on these objects is contained in the books [3], [6], and [1].

A few words about notation. Let F be a field, m, n positive integers. Assume that n
is not divisible by charF , and F contains the group of roots of unity of degree n, which 
is denoted by μn. The choice of a primitive root of unity ξn determines the isomorphism 
Z/nZ � μn, under which 1 takes to ξn. This isomorphism allows to identify the groups 
H1(F, Z/nZ) and H1(F, μn) = F ∗/F ∗n. Let a1, . . . , am ∈ F ∗. Consider the cup-product 
H1(F, Z/nZ) ⊗ · · · ⊗H1(F, Z/nZ) → Hm(F, Z/nZ). The elements ai ∈ F ∗/F ∗n can be 
considered as elements of the group H1(F, Z/nZ), provided a primitive root of unity ξn
is chosen. The element (a1) ∪(a2) · · ·∪(am) ∈ Hm(F, Z/nZ) is denoted by (a1, . . . , am)n. 
If n = 2 we omit the index n in the last symbol and write it merely as (a1, . . . , am).

By nBr(F ) we denote the n-torsion of the Brauer group Br(F ). If F contains the group 
of roots of unity of degree n and ξn is a fixed primitive root of unity, then by (a, b)ξn ∈
nBr(F ) we denote the class of the symbol algebra of degree n with the generators i
and j, and the relations in = a, jn = b, and ij = ξnji. There is an isomorphism 
ϕ : nBr(F ) � H2(F, Z/nZ) taking (a, b)ξn to (a, b)n, which permits us to identify the 
elements (a, b)n ∈ H2(F, Z/nZ) and (a, b)ξn ∈ nBr(F ). If n = km and ξn ∈ F , then 
k(a, b)n = (a, b)m ∈ Br(F ), where the roots of unity ξn and ξm are related by the 
equality ξkn = ξm.

For m ≥ 0, let Km(F ) denote the mth Milnor K-group of the field F . As-
sume that ξn ∈ F ∗. The symbols (a1, . . . , am)n satisfies the same basic relations as 
the symbols {a1, . . . , am} in Km(F )/n, hence there exists a natural homomorphism 
Km(F )/n → Hm(F, Z/nZ) called the norm residue homomorphism, which takes the 
symbol {a1, . . . , am} to the symbol (a1, . . . , am)n. Suppose that n = 2m, and −1 ∈ F ∗n, 
i.e. ξ2n ∈ F ∗. Let γ2 : K2(F )/n → K4(F )/n be the second divided power operation on 
K2(F )/n, which is well defined by the rule γ2(

∑
i

αi) =
∑
i<j

αiαj , where all αi are symbols 

in K2(F )/n ([4], [15]). We call the composition of the second divided power operation 
and the norm residue homomorphism

K2(F )/n → K4(F )/n → H4(F,Z/nZ)

the second divided power operation as well, and also denote it by γk. Moreover, the 
norm residue homomorphism K2(F )/n → H2(F, Z/nZ) is bijective ([9], Th. 11.5), 
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which permits us to define in an obvious way the second divided power operations 
H2(F, Z/nZ) → K4(F )/n and H2(F, Z/nZ) → H4(F, Z/nZ), which also will be de-
noted by γ2. Obviously, the divided power operations commute with field extension 
homomorphisms.

For every m ≥ 0 there is an operation wm : Ŵ (F ) → Hm(F, Z/2Z) on the Witt-
Grothendieck ring Ŵ (F ), which is called the mth Stiefel-Whitney map. These maps 
satisfy equalities w0 = 1 and

wm(〈a1, . . . , an〉) =
∑

i1<i2<···<im

(ai1 , ai2 , . . . aim)

for m ≥ 1 and ai ∈ F ∗. It readily follows that wm(α + β) =
∑

i+j=m

wi(α)wj(β) for any 

α, β ∈ Ŵ (F ) ([1], §5).
If L/F is a finite field extension, then by resL/F and NL/F we denote the restriction 

and the norm maps for the Brauer group, Milnor’s K-group, etc. The composition NL/F ◦
resL/F is multiplication by the degree of the extension L/F .

Finally, we assume that the characteristic of any field below is different from 2.

1. A degree four invariant for biquaternion algebras

We begin with the following theorem, which is an application of the chain lemma for 
biquaternion algebras from [13].

Theorem 1.1. Let F be a field, let A be a biquaternion. Consider two decompositions of 
A into a sum of two quaternions:

A = (a1, b1) + (c1, d1) = (a2, b2) + (c2, d2).

Then

(a1, b1, c1, d1) − (a2, b2, c2, d2) ∈ (−1,−1) ∪H2(F ) + (−1) ∪ [A] ∪H1(F ).

Proof. Recall the definition of equivalent decompositions of A into sum of two quaternion 
algebras ([13]). Let A = D1+D′

1 = D2+D′
2 be two decompositions of A into a sum of two 

quaternion algebras (the signs = and + will always mean equality and addition in the 
Brauer group of F ). We call these decompositions equal if D1 = D2 and D′

1 = D′
2, and 

simply-equivalent if there exist elements x, y, a, c ∈ F such that D1F (
√
a) = D′

1F (
√
c) = 0

and

D2 = D1 + (a, x2 − acy2), D′
2 = D′

1 + (c, x2 − acy2). (∗)

Notice that, since (ac, x2−acy2) = 0, we have D1+D′
1 = D2+D′

2 as soon as the equalities 
(∗) hold. We say that two decompositions of A are equivalent if they can be connected 
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by a chain of decompositions in such a way that every two neighboring decompositions 
in this chain are simply-equivalent. It has been proved in ([13], Prop. 1) that any two 
decompositions of A are equivalent to one another. Thus, it suffices to verify that if

A = (a, b) + (c, d) = (a, b(x2 − acy2)) + (c, d(x2 − acy2)),

then

(a, b(x2 − acy2), c, d(x2 − acy2)) − (a, b, c, d) ∈ (−1,−1)H2(F ) + (−1) ∪ [A] ∪H1(F ).

Obviously, we may assume that y �= 0. Put t = xy−1. We have

(a, b(x2 − acy2), c, d(x2 − acy2)) − (a, b, c, d) = (a,−bd, c, d(t2 − ac)) − (a, b, c, d) =

(a,−bd, c, d) + (a,−bd, c, t2 − ac) − (a, b, c, d) = (a,−bd, c, t2 − ac) =

(a,−bd, a, t2 − ac) = (−1,−bd, a, t2 − ac) = (−1,−1, a, t2 − ac) + (−1, bd, a, t2 − ac) =

(−1,−1, a, t2 − ac) + (−1, bd, a, t2 − ac) + (−1, ac, d, t2 − ac) =

(−1,−1, a, t2 − ac) + (−1, t2 − ac) ∪ [A],

which proves what we need. (In this computation we used the equalities (u, v1v2) =
(u, v1) + (u, v2), (u, −u) = 0, for u, v1, v2 ∈ F ∗, and the equalities (a, bd) + (ac, d) =
(a, b) + (c, d) and (ac, t2 − ac) = 0.)

Second proof. We will give another proof of the above theorem, which was proposed 
by the referee. By Jacobson’s theorem ([2]) there exists λ ∈ F ∗ such that

〈a1, b1,−a1b1,−c1,−d1, c1d1〉 � λ〈a2, b2,−a2b2,−c2,−d2, c2d2〉.

Computing the 4th Stiefel-Whitney invariant of both sides, we easily get the equality

(−1,−1, a1, b1) + (a1, b1, c1, d1) = (−1,−λ, a2, b2) + (−1, λ, c2, d2) + (a2, b2, c2, d2),

which is equivalent to

(a1, b1, c1, d1) − (a2, b2, c2, d2) = (−1,−1) ∪ [(a1, b1) + (a2, b2)] + (−1) ∪A ∪ (λ). �
Corollary 1.2. Let F be a field such that 〈 〈−1, −1〉 〉F = 0 (for instance, any field of 
positive characteristic). Let A be a biquaternion algebra over F such that (−1) ∪ A =
0 ∈ H3(F ). Then the element (a, b, c, d) ∈ H4(F ) does not depend on the decomposition 
A = (a, b) +(c, d) of A into a sum of two quaternion algebras. In particular, (a, b, c, d) = 0
if ind(A) ≤ 2.

Proof. Obvious, in view of Theorem 1.1. �
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Remark. Under the hypothesis of Corollary 1.2 we will call the invariant (a, b, c, d) ∈
H4(F ) for the biquaternion A = (a, b) +(c, d) the second divided power operation γ2(A)
on A, since when 

√
−1 ∈ F ∗ this is really the case. However, the hypothesis of Corol-

lary 1.2 does not permit to define γ2 on the 2-divisible part of the group 2Br(F ) by the 
same formula as in the case 

√
−1 ∈ F ∗. For instance, consider the decomposition of the 

trivial algebra as (a, b) + (a, c) + (a, bc) = 0. Then, mimicking the computation of γ2 of 
the left-hand part of the last equality in the case 

√
−1 ∈ F ∗, we get

(a, b, a, c) + (a, b, a, bc) + (a, c, a, bc) = (a, b, a, c) + (a, bc, a, bc) =

(−1, a, b, c) + (−1,−1, a, bc) = (−1, a, b, c) �= 0,

if 
√
−1 /∈ F ∗, and a, b, c are indeterminates.

Let F be a field such that 〈 〈−1, −1〉 〉F = 0. Let D1, D2 be biquaternion algebras over 
F such that D1 +D2 is a biquaternion algebra as well, and (−1) ∪D1 = (−1) ∪D2 = 0. 
It would be interesting to determine if γ2(D1 + D2) = γ2(D1) + γ2(D2) + D1 ∪D2 just 
as in the case when 

√
−1 ∈ F ∗. We do not know the answer in the general case, but at 

least it is positive in the following two cases, as we show in the following

Corollary 1.3. Let F , D1, D2 be as above. Assume additionally that either

a) there exists a quaternion Q such that D1 + Q, D2 + Q are quaternions, or
b) D1 and D2 have a common biquadratic splitting field extension.

Then γ2(D1 + D2) = γ2(D1) + γ2(D2) + D1 ∪D2.

Proof. In both cases the pair (D1, D2) can be parametrized. In case a) we have D1 =
(a, b) + (c1, d1), D2 = (a, b) + (c2, d2) for some a, b, ci, di ∈ F ∗. Hence D1 + D2 =
(c1, d1) + (c2, d2), so γ2(D1 + D2) = (c1, d1, c2, d2). On the other hand,

γ2(D1) + γ2(D2) + D1 ∪D2 = (a, b, c1, d1) + (a, b, c2, d2)+

(a, b, a, b) + (a, b, c1, d1) + (a, b, c2, d2) + (c1, d1, c2, d2) = (c1, d1, c2, d2),

since (a, b, a, b) = (−1, −1, a, b) = 0.
In case b) there are some a, b, c1, d1, c2, d2 ∈ F ∗ such that D1 = (a, c1) + (b, d1), 

D2 = (a, c2) + (b, d2) ([7], Prop. 5.2). Therefore,
D1 + D2 = (a, c1c2) + (b, d1d2), and

γ2(D1 +D2) = (a, b, c1c2, d1d2) = (a, b, c1, d1) + (a, b, c1, d2) + (a, b, c2, d1) + (a, b, c2, d2).

On the other hand,



342 A.S. Sivatski / Journal of Algebra 527 (2019) 337–347
γ2(D1) + γ2(D2) + D1 ∪D2 = (a, b, c1, d1) + (a, b, c2, d2)+

(a, c1, a, c2) + (a, c1, b, d2) + (b, d1, a, c2) + (b, d1, b, d2).

Therefore, the desired equality is equivalent to the equality (a, c1, a, c2) = (b, d1, b, d2), 
i.e. to (−1, a, c1, c2) = (−1, b, d1, d2). To prove the last equality note that by hypothesis 
we have (−1, a, c1) = (−1, b, d1), which implies

〈〈−1, a, c1〉〉 = 〈〈−1, b, d1〉〉 ∈ W (F ). (∗)

Similarly,

〈〈−1, a, c2〉〉 = 〈〈−1, b, d2〉〉. (∗∗)

It follows from (∗) and (∗∗) that

〈〈−1, a, c1c2〉〉 = 〈〈−1, b, d1d2〉〉. (∗∗∗)

Moreover, 〈 〈c1〉 〉 + 〈 〈c2〉 〉 − 〈 〈c1c2〉 〉 = 〈 〈c1, c2〉 〉, and similarly, 〈 〈d1〉 〉 + 〈 〈d2〉 〉 − 〈 〈d1d2〉 〉 =
〈 〈d1, d2〉 〉. The equality (∗) + (∗∗) − (∗∗∗) is just 〈 〈−1, a, c1, c2〉 〉 = 〈 〈−1, b, d1, d2〉 〉, 
which implies {−1, a, c1, c2} = {−1, b, d1, d2} ∈ K4(F )/2, and finally, (−1, a, c1, c2) =
(−1, b, d1, d2). �
Remark. Consider the case ind(D1 +D2) = 2 in Corollary 1.3. Then condition a) implies 
condition b). Indeed, assume that

D1 = (a, b) + (c1, d1), D2 = (a, b) + (c2, d2).

Then, since ind(D1 + D2) = 2, the quaternion algebras (c1, d1) and (c2, d2) have a 
common slot, say, s. Then F (

√
a, 
√
s) is a common splitting field for D1 and D2.

However, condition b) does not necessarily hold if ind(D1 + D2) = 2 ([12], Prop. 3), 
which, in its turn, implies the same for condition a).

Finally in this section we give a necessary condition for the biquaternion algebra A
to be cyclic.

Proposition 1.4. Under the hypothesis of Corollary 1.2 assume that A is cyclic. Then 
γ2(A) = 0.

Proof. Assume A = a ∪ χ for some character χ of order 4, and 2χ corresponds to an 
element l ∈ F ∗/F ∗2. Then (a, l) = a ∪ 2χ = 0. On the other hand,

AF (
√
a) = (

√
a)2 ∪ χ =

√
a ∪ 2χ = (

√
a, l).
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Hence AF (
√
a) = (b, l) for some b ∈ F ∗ ([14], Prop. 2.6). It follows that A = (a, c) + (b, l)

for some c ∈ F ∗. Therefore, γ2(A) = (a, c, b, l) = 0, since (a, l) = 0. �
Question. Assume that γ2(A) = 0. Is A cyclic? In [11] it was proved that this is the case 
if 
√
−1 ∈ F ∗.

2. A degree four invariant for certain elements of 4Br(F )

Let F be a field, let A ∈ 4Br(F ) be an algebra such that ind(2A) ≤ 2. In this section 
we introduce an invariant p(A) with values in H4(F ). To this end note that by ([7], 
Cor. 5.14) 2A = 2C for some cyclic element C of degree at most 4, hence A = C +α for 
some α ∈ 2Br(F ).

Theorem 2.1. The element p(A) := (2A) ∪ α does not depend on the presentation A =
C + α, hence it is an invariant of A.

Proof. We give the proof proposed by the referee. The original proof is longer and more 
complicated.

Assume that A = C1+α1 = C2+α2, where Ci = χi∪zi (χi ∈ H1(G, Z/4Z), zi ∈ F ∗), 
and 2αi = 0 for i = 1, 2. By hypothesis, 2A = 2C1 = 2C2 is a quaternion algebra. The 
common slot lemma yields z ∈ F ∗ such that

2χ1 ∪ z1 = 2χ1 ∪ z = 2χ2 ∪ z = 2χ2 ∪ z2, (1)

hence

C1 − C2 = χ1 ∪ (zz1) − χ2 ∪ (zz2) + (χ2 − χ1) ∪ z.

From (1) it follows that 2χ1 ∪ (zz1) = 0, hence χ1 ∪ (zz1) is a biquaternion algebra. The 
character 2χ1 corresponds to an element a1 ∈ F ∗/F ∗2. Obviously, the element χ1∪(zz1)
is split by F (√a1, 

√
zz1), hence

χ1 ∪ (zz1) = (a1, x1) + (zz1, y1)

for some x1, y1 ∈ F ∗.
Likewise, if the character 2χ2 corresponds to an element a2 ∈ F ∗/F ∗2, then there are 

x2, y2, x3, y3 ∈ F ∗ such that

χ2 ∪ (zz2) = (a2, x2) + (zz2, y2), (χ2 − χ1) ∪ z = (a1a2, x3) + (z, y3).

This implies

α2 − α1 = C1 − C2 = (a1, x1) + (zz1, y1) + (a2, x2) + (zz2, y2) + (a1a2, x3) + (z, y3).

(2)
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Since 2A = 2C1 = (a1, z1), and a1 is a sum of two squares (because a1 = 2χ1), it follows 
that (2A) ∪ (a1) = (−1, a1, z1) = 0. Similarly, (2A) ∪ (a2) = 0. Moreover, (1) yields 
(a1, zz1) = (a2, zz2) = 0, hence (2A) ∪ (zz1) = (2A) ∪ (zz2) = 0. Finally, since 2A =
(a1, z), we have

(2A) ∪ (z) = (a1, z, z) = (a1,−1, z) = 0.

Therefore, (2A) ∪ (α2 − α1) = 0 in view of (2), which completes the proof. �
If 

√
−1 ∈ F ∗ Theorem 2.1 can be a bit strengthened.

Proposition 2.2. Under hypothesis of Theorem 2.1 assume additionally that 
√
−1 ∈ F ∗, 

and A = D + β, where indD ≤ 4, β ∈ 2Br(F ). Then p(A) = (2A) ∪ β. In general p(A)
is not zero.

Proof. First consider the following particular case.

Lemma 2.3. Let F be a field, 
√
−1 ∈ F ∗, Q a quaternion algebra over F . Let the element 

D ∈ 4Br(F ) be such that indD = ind(D + Q) = 4. Then (2D) ∪Q = 0 ∈ H4(F ).

Proof. By Risman’s theorem ([10]) there exists a quartic extension L/F such that 
DL = QL = 0. We may assume that F has no proper odd degree extension. Then 
L = F (

√
x + y

√
a) for some x, y, a ∈ F , hence we have DF (

√
a) = (x + y

√
a, p + q

√
a)

and QF (
√
a) = (x + y

√
a, p1 + q1

√
a) for some p, q, p1, q1 ∈ F . By the projection formula 

we get

(2D) ∪Q = NF (
√
a)/F (DF (

√
a)) ∪Q = NF (

√
a)/F (DF (

√
a) ∪QF (

√
a)) =

NF (
√
a)/F (x + y

√
a, x + y

√
a, p + q

√
a, p1 + q1

√
a) = 0,

since (x + y
√
a, x + y

√
a) = (−1, x + y

√
a) = 0. �

We return to the proof of Proposition 2.2. By ([8], Th. 1.3) we have D = C + Q, 
where C is cyclic of degree at most 4, and Q is a quaternion algebra. In particular, 
A = C + β + Q.

By Lemma 2.3 (2A) ∪Q = (2D) ∪Q = 0, hence

p(A) = (2A) ∪ (β + Q) = (2A) ∪ β.

To give an example of an algebra A with p(A) �= 0, consider any field k with 
√
−1 ∈ k∗, 

and put F = k(u, v, x, y), where u, v, x, y are indeterminates. Then p(A) = (u, v, x, y) �=
0, where A = (u, v)4 + (x, y). This completes the proof of Proposition 2.2. �
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Corollary 2.4. Under hypothesis of Lemma 2.3 the division algebra associated with the 
element 2D + Q is cyclic.

Proof. Let πD and πQ be the Pfister forms associated with the quaternion algebras 2D
and Q. Following the proof of Lemma 2.3, it is easy to see that πD ⊗ πQ = 0. Now the 
result follows from ([11], Th. 3). �
Remark. One cannot expect an invariant similar to p for elements A = D̃ + α, where 
D̃ ∈ 4Br(F ), ind D̃ ≤ 8, and α ∈ 2Br(F ). Indeed, let, for instance, F = k(x, y), where 
x, y are indeterminates, α = (x, y), D ∈ 4Br(k), indD = 4, 2D �= 0, and D̃ = D + α. 
Then, clearly, ind D̃ = 8, and (2D) ∪ α �= 0 = (2D̃) ∪ 0.

Lemma 2.3 remains valid even if 
√
−1 /∈ F ∗. However, we omit the proof of this result, 

since it is a bit technical, and we do not need it in the sequel.

Next we compare the invariants p(A) = (2D) ∪ α ∈ H4(F ) and the second divided 
power operation γ2(A) ∈ K4(F )/4, provided ξ8 ∈ F ∗. To do this we need the following

Lemma 2.5. Let F be a field, ξ8 ∈ F ∗, A ∈ Br(F ), indA = 4.
Let further γ2 : K2(F )/4 → K4(F )/4 be the second divided power operation. Then 

γ2(A) = 0.

Proof. Let ϕ : H4(F, Z/2Z) → H4(F, Z/4Z) be the homomorphism induced by the 
natural embedding Z/2Z → Z/4Z. By ([8], Th. 1.3)

A = (a, b)4 + (c, d) = (a, b)4 + (c, d2)4

for some a, b, c, d ∈ F ∗, hence γ2(A) = (a, b, c, d2)4 = ϕ(a, b, c, d). On the other hand, 
(a, b, c, d) = 0 by Lemma 2.3. �

In fact Lemma 2.5 is a particular case of the following

Proposition 2.6. Let F be a field, ξ8 ∈ F ∗, and A = D+α, where D ∈ 4Br(F ), indD ≤ 4, 
α ∈ 2Br(F ). Then ϕ(p(A)) = γ2(A).

Proof. Let D =
∑
i

(ui, vi)4, α =
∑
i

(ai, bi). We have

γ2(A) = γ2(D) + γ2(α) + (
∑
i

(ui, vi)4) ∪ (
∑
j

(aj , b2j )4) =
∑
i,j

(ui, vi, aj , b
2
j )4,

since γ2(D) = 0 by Lemma 2.5, and

γ2(α) =
∑

(ai, b2i , aj , b2j )4 = 4
∑

(ai, bi, aj , bj)4 = 0.

i,j i,j
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On the other hand, p(A) = (2D) ∪ α =
∑
i,j

(ui, vi, aj , bj). The equality ϕ(ui, vi, aj , bj) =

(ui, vi, aj , b
2
j )4 implies the claim. �

Remark. Assume that A = D + α ∈ 4Br(F ), where indD ≤ 4, α ∈ 2Br(F ). We do 
not know if necessarily p(A) = (2D) ∪ α if 

√
−1 /∈ F ∗. This would be true if there 

were a chain C = D0, D1, . . . , Dn = D with a cyclic C, and Di ∈ 4Br(F ), indDi ≤ 4, 
ind(Di −Di−1) = 2. Indeed, in this case we have for β = D − C

2D ∪ β = (2D) ∪ (D − C) =
n∑

i=1
(2Di−1) ∪ (Di −Di−1) = 0

in view of the remark after Corollary 2.4. Hence

(2D) ∪ α = (2C) ∪ (α + β) = p(A).

However, it seems to be unknown whether such a chain always exists.
Note also that the invariant γ2 for biquaternions from Corollary 1.2 can be expressed 

via p in the following way. Let A = (a, b) + (c, d). Assume that 〈 〈−1, −1〉 〉F = 0 and 
(−1) ∪A = 0. There exists a decomposition A = (a1, b1) + (c1, d1), where (−1, a1, b1) =
(−1, c1, d1) = 0 ([5], Lemma 1.3). Hence (a1, b1) = 2C for some cyclic C, indC ≤ 4, and

γ2(A) = (a1, b1, c1, d1) = p(C + (c1, d1)).
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