期刊论文详细信息
JOURNAL OF ALGEBRA 卷:554
Cohomology groups of Fermat curves via ray class fields of cyclotomic fields
Article
Davis, Rachel1  Pries, Rachel2 
[1] Univ Wisconsin Madison, Madison, WI USA
[2] Colorado State Univ, Ft Collins, CO 80523 USA
关键词: Cyclotomic field;    Class field theory;    Ray class field;    Absolute Galois group;    Heisenberg group;    Fermat curve;    Homology;    Galois cohomology;    Obstruction;    Transgression;   
DOI  :  10.1016/j.jalgebra.2020.02.030
来源: Elsevier
PDF
【 摘 要 】

The absolute Galois group of the cyclotomic field K = Q(zeta(p)) acts on the etale homology of the Fermat curve X of exponent p. We study a Galois cohomology group which is valuable for measuring an obstruction for K-rational points on X. We analyze a 2-nilpotent extension of K which contains the information needed for measuring this obstruction. We determine a large subquotient of this Galois cohomology group which arises from Heisenberg extensions of K. For p = 3, we perform a Magma computation with ray class fields, group cohomology, and Galois cohomology which determines it completely. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2020_02_030.pdf 554KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次