期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:456
A level 16 analogue of Ramanujan series for 1/π
Article
Lee, Yoonjin1  Park, Yoon Kyung2 
[1] Ewha Womans Univ, Dept Math, 52 Seodaemun Gu, Seoul 03760, South Korea
[2] Ewha Womans Univ, Inst Math Sci, 52 Seodaemun Gu, Seoul 03760, South Korea
关键词: Ramanujan's series for 1/pi;    Modular function;    Modular equation;    Ray class field;   
DOI  :  10.1016/j.jmaa.2017.06.082
来源: Elsevier
PDF
【 摘 要 】

The modular function h(tau) = q(n=1)Pi(infinity) (1-q(16n))(2)(1-q(2n))/(1-q(n))(2) (1-q(8n)) is called a level 16 analogue of Ramanujan's series for 1/pi. We prove that h(tau) generates the field of modular functions on Gamma(0)(16) and find its modular equation of level n for any positive integer n. Furthermore, we construct the ray class field K(h(tau)) modulo 4 over an imaginary quadratic field K for tau is an element of K boolean AND S such that Z[4 tau] is the integral closure of Z in K, where Sj is the complex upper half plane. For any tau is an element of K boolean AND f., it turns out that the value 1/h(tau) is integral, and we can also explicitly evaluate the values of h(tau) if the discriminant of K is divisible by 4. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_06_082.pdf 414KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次