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A LEVEL 16 ANALOGUE OF RAMANUJAN SERIES FOR 1/7

YOONJIN LEE AND YOON KYUNG PARK

ABSTRACT. The modular function

(1- 16") (1—q
hr) =1 H 2(1—g*)

is called a level 16 analogue of Ramanujan’s series for 1/m. We prove that h(7) generates
the field of modular functions on I'o(16) and find its modular equation of level n for any
positive integer n. Furthermore, we construct the ray class field K (h(7)) modulo 4 over
an imaginary quadratic field K for 7 € K N $ such that Z[47] is the integral closure of
Z in K, where $) is the complex upper half plane. For any 7 € K N ), it turns out that
the value 1/h(7) is integral, and we can also explicitly evaluate the values of h(7) if the
discriminant of K is divisible by 4.

")

1. INTRODUCTION

In [21], Ramanujan studied the series converging to 1/7:
115 (2n\*42n+5
T 16 n 212n -

n=0

The coefficient (2;) appearing in the above series is the same as the coefficient appearing
in the following identity

q;; log <1,_‘”1m> - go <2:>3 (w(1 — 16w))"

where
n 8 1 _ q4n)16

];[ 1 _ q2n) ’

q=¢e>"" and 7 € §:= {7 € C: Im(7) > 0}. Actually, w(7) generates the field of modular
function on T'y(4) with a simple zero at co and a simple pole at 1/2.

These types of identities for 1/m have been studied: for levels 1,2 and 3 by Berndt-
Bhargava-Garvan [1], for levels 5,6, 8 and 9 by Chan-Cooper [3], for levels 7,10 and 18 by
Cooper [6, 7], for levels 11 and 23 by Cooper-Ge-Ye [8] and for levels 12,13,14 and 15 by
Cooper-Ye [9, 10, 11].
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Recently, Ye studied a modular function h(7) of level 16 [23]:

o0 1— 16m\2 1—
(1.1) hr) =4[] ((1 _qqn)g(i - qgn) .

This modular function h(7) is called a level 16 analogue of Ramanujan’s series for 1/m. He

showed that the coefficient A,, appearing in the series (1.3) converging to 1/7 is exactly the
same as the coefficient A,, appearing in (1.2), where

d h (1+2h)(1+4h)\"
(1.2) qdql()g<(1_’_2h) 1+ 4h > ZA ( 1—8h2)2 > 7

> 48n + 13
(1.3) Z

For its proof, he proved several identities between h(7) and some 7-quotients, and he found
modular equations of h(7) of levels 2,4 and 8.

Qn)

n=1

In this paper we study the modular function h(7) of level 16. We first prove that h(7)
generates the field of modular functions on I'g(16) (Theorem 1.1), and we find the modular
equations of level n for any positive integer n (Theorem 1.2). We find examples for levels
2,3,5,7 and 11 in Table 1 using MAPLE program. On the other hand, we use h(7) to get
the ray class field modulo 4 over an imaginary quadratic field K (Theorem 1.3, Corollary
1.4). We show that the value 1/h(7) is an algebraic integer in a certain number field
(Theorem 1.5). If A(7) can be written in terms of radicals, then we can write h(r7) in terms
of radicals for any positive rational number r by using the algorithm in [17, Algorithm 1.6].
Furthermore, we can get the value h(7) for 7 € K N $H when K has discriminant divisible
by 4 (Theorem 1.6).

We state our main results as follows.

Theorem 1.1. Let h(7) be defined in (1.1). Then h(T) is a modular function on Ty(16)
and the field of modular functions on Ty(16) is C(h(T)).

Theorem 1.2. For any positive integer n, we can obtain a modular equation F,(X,Y) of
h(7) of level n in an explicit way.

Theorem 1.3. Let K be an imaginary quadratic field with discriminant dg. Let 7 € KN$H
be a root of the equation 16az? 4 4bx + ¢ = 0 such that b* — 4ac = dg, (a,b,c) = 1 and
(a,2) =1, where a,b,c € Z. Then K(h(7)) is the ray class field modulo 4 over K.

Corollary 1.4. Let K be an imaginary quadratic field. If Z[41] is the integral closure of Z
in K, then K(h(T)) is the ray class field modulo 4 over K.

Theorem 1.5. Let K be an imaginary quadratic field. Then 1/h(7) is an algebraic integer
forany T € KN$H.
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Theorem 1.6. We can explicitly evaluate the value of h(7) for any 7 € K N $ if the
discriminant of K is divisible by 4. If h(T) is expressed in terms of radicals, then we can
express h(rt) in terms of radicals for any positive rational number r. In particular, if n = 1
or m is a square free positive integer with n Z 3 (mod 4), then we can evaluate h(r/—n)
for any positive rational number r.

2. A MODULAR FUNCTION OF LEVEL 16

We recall some definitions and properties in the theory of modular functions. Let $* :=
HUQU {oc}. For a positive integer N, the congruence subgroup I'o(N) is a subgroup of

SLy(Z) defined by
To(N) = {(CC‘ Z) € SLy(Z): N | c}.
ab

A element v = (C d) of To(N) acts on H* by a linear fractional transformation: yr =
(at 4+ b)/(cT + d). We call an element s € QU {oo} a cusp. If there exists v € T'o(N)
satisfying vs1 = s9, then two cusps s1 and sy are equivalent under T'o(N). In fact, there are
at most finitely many inequivalent cusps of I'g(N). The width h of a cusp s in I'o(N)\H* is
the smallest positive integer satisfying that p~! (5 ff) p € Ty(NN) for some p € SLo(Z) with
p(s) = oo. Indeed, the width of the cusp s depends only on the equivalent class of s under
I'o(N), and it does not depend on the choice of p.
A modular function f(7) on T'g(N) is a C-valued function of $) satisfying the following
three conditions:
(1) f(7) is meromorphic on $.
(2) f(7) is invariant under I'g(N), i.e., f(y7) = f(7) for all v € T'y(V).
(3) f(7) is meromorphic at all cusps of T'o(N).
The order of f(7) at a cusp is calculated as follows. Let s be a cusp of T'o(N), f(7) be a
modular function on I'g(N), h be the width of s, and p be an element of SLy(Z) such that
p(s) = oo. Note that

(fop™)(r+h)= (f op”! ((1) }f) p> (') = (fop™)(r)

and f o p~! has a Laurent series expansion in g, = e™7/" ie., (fop 1)(7) = > nsng W)y
with a,, # 0. Then we call ng the order at the cusp s of f(7) and denote by ord, f(7).

Let Ao(To(IN)) be the field of all modular functions on I'g(N) and Ag(I'o(IN))g be the
subfield of Ag(T'o(N)) which consists of all modular functions f(7) whose Fourier coefficients
belong to Q. The field Ag(T'o(N)) may be identified with the field C(I'o(N)\$H*) of all mero-
morphic functions on the compact Riemann surface To(N)\H*. When f(7) € Ag(To(N))
is nonconstant, the extension degree [Ay(To(N)) : C(f(7))] is equal to the total degree of
poles of f(7). Hence, if a modular function f(7) of I'o(IV) has neither zeros nor poles on $,
then

[Ao(To(NV)) : C(f(7))] = — > ord, f(7).
s is a cusp of Ty(N),
ordsf(r)<0

From the following lemma we can find the set of all inequivalent cusps of T'o(N) and the
width of each cusp.
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Lemma 2.1. Let a,c,d’, ¢ € Z be such that (a,¢) =1 and (a’,) = 1. We understand that
+1/0 = co. We denote by Sr(ny a set of all the inequivalent cusps of 'o(N). Then
(1) a/c and '/ are equivalent under To(N) if and only if there exist 3 € (Z/NZ)*
and n € 7 such that (a’,) = (37! - a+nc,5-¢) (mod N).
(2) We can take Sto(n) as the following set

Sroav) = {azj6Q10<0|N70<ac,j§N,(ac,j,N):1,

Acj = Qe jr el acj = acy  (mod (c, N/c))}
(3) The width of the cusp a/c € Spyyy is N/(N,c?).
Proof. See [5, Corollary 4 (1)]. O
The Dedekind eta function is defined by

NI

n(r) = q2

[Ta-a.

The following two lemmas present some information on the modularity and the behavior of
an eta-quotient.

Lemma 2.2. Let f(7) = [[5yn(07)" be an eta-quotient, where k = %Z(”N rs € Z and
s = H5|N 6", with the additional properties that

(1) 2sn 675 =0 (mod 24), and

(2) sy 5rs =0 (mod 24).

Then f(r) satisfies i
() = (5 e v arro)

for any (25) € To(N).

Lemma 2.3. Let ¢,d and N be positive integers with d | N and (¢,d) = 1. If f(7) is an
eta-quotient satisfying the conditions of Lemma 2.2, then the order of vanishing of f(7) at
the cusp c¢/d is
N (d7 5)2 *Ts
24 S (d,N/d) - do
The proof of Lemma 2.2 is found in [13, 19, 20], and the proof of Lemma 2.3 is given in
[2, 16, 18].

Proof of Theorem 1.1. Note that h(r) is written as n(7)~2n(27)n(87) " *n(167)%. By
Lemma 2.2, for any v € T'y(16), h(y7) = h(7). Since n(7) is holomorphic on $H* with only
zero at cusps, h(7) is a modular function on I'g(16). By Lemma 2.1 (2), the set Sr,(16) of
inequivalent cusps of I'g(16) can be taken as

1131
SF0(16) = {OO, 07 57 17 Zv 8} .
Furthermore, Lemma 2.3 shows that A(7) has the only simple pole at 0 and the only simple

zero at oco. Hence [Ag(To(16)) : C(h(7))] = 1 and the field Ay(T(16)) is generated by
h(T). O
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For the simplicity, we call the Hauptmodul the normalized generator of a genus zero
function field with g-series ¢=! + 0+ >_°° | ¢,¢". Since 1/h(7) has a pole at co and its
g-series is ¢ 71 —2+2¢3 — ¢" +- - -, we see that 1/h(7) + 2 is the Hauptmodul of I'y(16). By
Theorem 1.1 we get another proof of [23, Theorem 3.3 (1)].

27+ 3) =T

Proof. By the definition of h(7),

Proposition 2.4.

1) _ _nA(n)n’(r)y(167)

Hir):=h ( T3 @)

Using Lemma 2.3, H(7) is a modular function on T'g(16) with only zero at co and only pole
at 1/2. From that 1/H(7) = —¢~' —2—2¢> + ¢ + ---, we note that —1/H(7) — 2 is the
Hauptmodul on I'g(16). By solving 1/h(7) +2 = —1/H(7) — 2, we obtain that

2 (74 3) =T

We need the following lemma to have the existence of an affine plane model defined over
Q, which will be called the modular equation.

0

Lemma 2.5. Let n be a positive integer. Then we get

Q(h(7), h(nT)) = Ao(L'o(16n))q.
Proof. For any a € GL3 (Q), h(at) = h(7) if and only if a« € Q* - I'¢(16) since Q(h(7)) =
Ap(To(16))g. For B, = (2Y), we get that

To(16) N B Ta(16)B, = To(16n).

Hence h(7) and h(nt) = ho 3,(7) belong to Ay(To(16n)).
It is sufficient to show that

Q(h(1), h(nT)) D Aog(Lo(16n)).
We choose M; € I'g(16) and write I'g(16) = |J;[o(16n) - M; as a disjoint union. Let
x(7) == h(nt) = (ho By)(7).

Suppose that we can choose distinct indices i and j such that
(2.1) x o M; = x o Mj.
Then
hoB,oM;=hof,oM;
= h=nhopB,M;M'5,*
= BuM;MIBT € Q- To(16)
= M;M; ! € B,'To(16)B,.

As M;, Mj € To(16), we have M;M; ' € To(16n), and it is a contradiction to (2.1). There-
fore all functions x o M; are distinct, and h(7) and h(n7) generate the field Ag(I'o(16n))g
over Q. O

Lemma 2.6. Let a,c,a’,¢ € Z and h(1) as above. Then we have the following assertions.
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(1) h(r) has a pole at a/c € QU {oco} with (a,c) = 1 if and only if (a,c) = 1 and
(2,¢) =1.

(2) h(nt) has a pole at o'/ € QU {oo} if and only if there exist a,c € Z such that
a/c=nd /d, (d,d)=1 and (2,c) = 1.

(3) h(7) has a zero at a/c € QU{oo} with (a,c) =1 if and only if (a,c) =1 and 16 | c.

(4) h(nT) has a zero at o’ /¢’ € QU {oo} if and only if there exist a,c € Z such that
afc=nd/d, (d,d)=1 and 16 | c.

Proof. We note that h(7) has the only pole at a/c € QU {oo} such that a/c is equivalent to
0 under T'y(16). By Lemma 2.1, (a,c¢) = (n,5) (mod 16) for some s € (Z/16Z)* and n € Z.
Hence (a,c) =1, (2,¢) = 1 and we have (1) and (2).

We use that h(7) has the only zero at a/c € QU {oo} such that a/c is equivalent to co
under T'g(16). For this we have the pair (a,c) such that (a,c) = (5,0) (mod 16) for some
s € (Z/16Z)*. In other words, h(7) has the zero at a/c such that (a,c) = 1 and ¢ = 0
(mod 16). So, we get (3) and (4). O

Let d,;, be the total degree of poles of h(m7) for any positive integer m. We focus on
finding a modular equation which gives the relation between h(7) and h(n7). Then the
following lemma gives a polynomial F,(X,Y") and some information on its coefficients. In
detail,

FuX,Y)= ) Ci;X'Y7e€Q[X,Y].

0<i<dy,
0<j<di

In [14], Ishida-Ishii shows the following lemma using the theory of algebraic functions. This
lemma is useful in checking which coefficient C; ; is zero or nonzero in F,,(X,Y).

Lemma 2.7. For any congruence subgroup T, let f1(7) and fo(T) be nonconstants such that
C(f1(7), f2(7)) = Ao(T) with the total degree Dy, of poles of fi(T) for k =1,2. Let

F(X,Y)= Y Ci;X'Y7 €C[X,Y]

0<i<Dy
0<j<D1

be such that F(fi1(7), fa(7)) = 0. Define the subsets Sk and Sy of the set Sr of all
inequivalent cusps of I' by
Sko = {s € Sr: fu(T) has zeros at s}
and
Sk,oo :={s € Sr: fr(T) has poles at s}
fork=1,2. Let
a=— Z ords f1(T) and b = Z ords f1(7).

8651)00052,0 8631,0ﬁ52,0

We assume that a (respectively, b) is zero if S1 00 N Sao (respectively, S10MN Sap) is empty.
Then we obtain the following assertions.

(1) Cpy,a #0. In addition, if S1,0c C S2,00 USayp, then Cp, ; =0 for any j # a.

(2) Cop # 0. In addition, if S1,0 C S2,00 U S20, then Cyj =0 for any j # b.

(3) Cz’,Dl =0 fO’I” 0<1< |SLQ N 52700‘,D2 — ‘51700 n SQ7<X>| <1< Ds.
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(4) Ci,O =0for0<i< |Sl70 N 5270|,D2 — |Sl,oo N 52’0| <1< Dsy.

If we interchange the roles of f1(7) and fa(7), then we may have more properties
sitmilar to (1)-(4). Suppose that there exist r € R and N,ny,ns € Z with N > 0
such that

fi(r+r) = ¢ fi(r)
for j =1,2, where (n = e2™/N . Then we get the following assertion:
(5) If nii+ngj # niDa+noa (mod N), then C;j = 0. Here note that ngb = nyDa+noa
(mod N).

Proof. See [14, Lemmas 3 and 6. O

The modular equation of level 2. In Lemma 2.7, let fi(7) = h(7) and fao(7) =
h(27). By Lemma 2.5, Q(f1(7), f2(7)) = Ao(T'0(32)), and we may take the set St (s9) of
inequivalent cusps of I'5(32) as follows:

SF()(BQ) = {O0,0, 77777
From Lemma 2.3, we have
orde f1(7) = 1,0rd; 16 f1(7) = 1,0rdo f1(7) = —2,
orde f2(7) = 2,0rdg f2(7) = —1, and ord; 5 fo(7) = —1.
Hence we have the polynomial
Fy(X,Y) = Z C; j X'Y7
0<i,5<2
such that Fy(f1(7), fo(7)) = 0. Since there is no point s such that ordsfi(7) < 0 and
ordgfo(r) > 0, Ca9 # 0, and Cy; = Ca2 = 0. In a similar way, by using that both fi(7)
and fo(7) have a zero at co with orde f1(7) = 1, we obtain that Cp; # 0. Without loss of
generality, we may assume that Cy9 = 1. Replacing X and Y by g-expansions of h(7) and
h(27) in
FQ(X, Y) = X? + CLQXYZ -+ CLlXY + CLOX + 0072}/2 + C()JY -+ CO,(),
then we can determine the remaining coefficients C; ; as follows:
Co1=-1,Cop=—-2,C11=—4,C12=-8,C190=0,Cpp = 0.
Thus, we get
F(X,Y)=X?-Y(1+4X)(1+2Y).
So the modular equation of level 2 of h(7) is
h?(7)

1+ 4h(T)
Theorem 2.8. Let p be an odd prime and F,,(X,Y") be the irreducible polynomial satisfying
Fo(h(7),h(nT)) =0. Then

Fp(X,Y)= >  Ci;X'V7/€QX,Y]
0<i,j<p+1

= h(27)(1 + 2h(27)).

and

(1) Cp+1’0 75 0 and CO,p-',—l 7& 0.
(2) CPJrLj = Cj,p+1 =04j=1,....,p+ 1.
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(3) Co)j :ij:O 7,f] :0,...,]9.
Proof. For an odd prime p, let St (16) be the set of all inequivalent cusps of T'y(16p). Then
by Lemma 2.1 all the elements of Sp (16p) are 00,0,1/2,1/4,3/4,1/8,1/16,1/p, 1/2p,1/4p, 3 /4p

and 1/8p with widths 1, 16p, 4p, p, p, p, p, 16,4, 1,1 and 1, respectively. Since Q(h(7), h(pT)) =
Ap(Tp(16p)), we have

ordoh(7) = —p,ordy ,h(1) = —1,0rd; ;16h(T) = p, ord; s16,h(7) = 1
and
ordoh(pr) = —1,0rdy /ph(pT) = —p,ord; /16h(pT) = 1,0rdy /16 (PT) = P

Thus, the modular equation Fj,(X,Y) is

F(X,Y)= > Gy XY
0<i,j<p+1

Consider f1(7) = h(r) and fo(7) = h(p7) in Lemma 2.7. Then we can take a = 0 and
b=p+1, so we get

(1) Cpt10# 0 and Cpp11 = Cpr12 =+ = Cpr1ps1 =0,
(2) Cop+1 #0and Coo = Cp1 =+ = Copp = 0.
Similarly, if we let f1(7) = h(p7) and fa(7) = h(7), then a = 0 and b = p + 1. Moreover,
(1) Co,p+1 7é 0 and 017p+1 = 02,p+1 = =0Cpt1pt1 = 0,
(2) Cpr10# 0and Cop=Crp="-=Cpo=0.
Hence we proved (1), (2) and (3). O

Proof of Theorem 1.2. Let f1(7) and f3(7) be nonconstant modular functions satisfying
C(f1(7), f2(7)) = Ao(T) for some congruence subgroup I'. Then

[C(f1(7), f2(7)) : C(£5(7))] = dj,

where d; is the total degree of poles of fj(7) on I'\HH* and j = 1,2. Hence there exists
a polynomial ®(X,Y) € C[X,Y] such that ®(f1(7),Y) (respectively, ®(X, fo(7))) is a
minimal polynomial of f5(7) (respectively, fi(7)) over C(fi(7)) (respectively, C(f2(7))) with
degree d; (respectively, da). Let fi(7) = h(7) and f2(7) = h(n7). Then by using Lemma 2.5,
we may consider a polynomial F,(X,Y) € Q[X,Y] such that F,(h(7),h(n7)) = 0 for any
positive integer n. Here, degy F,,(X,Y) = d2 and degy F,,(X,Y) = d;. This polynomial
F,(X,Y) is the modular equation of h(7) of level n for every positive integer n. a

Using Theorem 2.8, we get the modular equations of level p which are presented in Table
1 when p=2,3,5,7 and 11.
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TABLE 1. The modular equations F,(X,Y") of h(7) of levels 2,3,5,7 and 11

D ‘ The modular equation F,(X,Y) of h(7) of level p

2 | X2 -Y(1+4X)(1+2Y)

31(X3-Y)(X-Y?)
—3XY 2Y +4Y? 42X +10XY +16 XY? +4 X + 16 X?Y + 21 X*Y?)

5 [(XP-Y)(X -Y?)
—5XY(16Y3+8X2+2Y +8Y?+14Y*+2X +20XY +80XY?2+ 157 XY3 + 128 XY*
+80 X2Y + 324 X2Y2 4+ 640 X2Y3 + 512 X2Y* 4+ 16 X3 + 157 X3Y + 640 X3Y2 4 1280 X3Y3
+1024 X3Y* + 14 X* + 128 X4Y + 512 X4Y2 41024 X4Y3 + 819 X4y *)

TI(XT-Y)(X-YT)
~TXY (2X+2Y +12Y24+40Y3 +84Y° +40YS + 78 Y4 + 12 X2 440 X3 + 78 X*
+84 X° +40 X6 492160 X°Y?* + 672 XY + 180 X2Y + 20480 X6Y3 + 29 XY + 180 XY?
4620 XY3 41252 XY* + 1396 XY 4+ 1156 X2Y2 + 4120 X2Y? + 8632 X2Y? 4+ 10016 X2Y®
+4992 X2Y6 4 620 X3Y + 4120 X3Y? + 15190 X3Y3 + 32960 X3Y* + 39680 X3Y® + 20480 X3Y6
+1252 X4Y + 8632 X4Y?2 + 32960 X4Y3 4 73984 X4Y 4 + 92160 X4Y® + 49152 X4Y6
+1396 X°Y + 10016 X°Y2 + 39680 X°Y3 4 118784 X Y + 65536 X°Y 6 4 672 XOY + 4992 X6y 2
+49152 XY + 65536 X0V + 37449 X6Y¢)

(X" -y)x -yt

—11XY (2Y +2X +20Y2+120Y3 +478 Y + 1316 Y° + 2520 Y + 3280 Y

+2729Y8 +1270Y? + 236 Y10 + 20 X2 + 120 X2 + 478 X* + 1316 X° + 2520 X6

+3280 X7 4 2729 X8 + 1270 X? + 236 X 10 + 407502848 XY + 480 X2Y + 6242560 X°Y3
+10545728 X8Y3 4 1243548 X2Y® + 10617267 X3Y 7 + 36489216 X*Y? + 335544320 X 10y8
443122688 X°Y19 4+ 1006632960 XY 8 + 1006632960 X8Y? + 206867200 XY + 3000 X3Y
+771751936 XY 4+ 945184768 X Y7 4 786432000 XY 7 + 86758 X8Y + 126141088 X6V
+230758 X3Y3 + 531390464 XY + 916956 XY 2 + 531390464 XY + 251658240 X Y10
+694064 XY? 4 10321920 X 10V * + 268435456 XY'10 4 71268 XY + 35647 X°Y

497612893 X 1010 4 46 XY + 480 X Y2 + 3000 X Y3 + 12436 XY* + 35647 XY + 71268 X Y6
+97540 XY™ + 86758 XY ® + 44862 XY + 10160 X Y1V + 5223 X2Y2 4 34014 X 2Y3

+146872 X2Y* + 438876 X2Y° 4+ 916956 X2Y6 + 1318216 X2Y7 + 694064 X2Y? + 174656 X 2Y'10
+34014 X3Y? 4+ 1037872 X3Y* 4 3232300 X3Y® + 7050856 X3Y® + 10545728 X3Y8

46242560 X3Y? + 1679360 X3Y 10 + 12436 X1Y + 146872 X4Y2 + 1037872 X 1Y3

+4860966 X*Y* + 15767636 XY + 35860024 XY + 56406848 X4V + 58685184 X *Y8
410321920 X4Y10 + 438876 X°Y 2 + 3232300 X°Y3 + 15767636 X°Y* + 53252516 X°Y?
+126141088 X°Y6 + 206867200 X°Y 7 + 224704512 X°Y® + 146010112 X°Y? + 7050856 X 6Y3
+35860024 X6Y* + 311101824 X6Y 6 + 601587712 X0Y® + 125304832 X6Y10 + 97540 XY
+1318216 X7Y2 4+ 10617267 X7Y3 + 56406848 X7Y* 4+ 1114570752 X"Y® + 786432000 X 'Y
+1243548 X8Y2 + 58685184 X8Y* + 224704512 X8Y® + 601587712 X3Y 6 + 1114570752 X3Y”7
+1369178112 X8Y® + 335544320 X8Y 10 + 44862 XY + 36489216 X°Y* + 146010112 X9Y5
+407502848 X9Y6 + 10160 X0V 4 174656 X10Y2 + 1679360 X 10Y3 4 43122688 X 10Y>
+125304832 X 106 + 251658240 X 10V 7 + 268435456 X 10Y? )




10 YOONJIN LEE AND YOON KYUNG PARK

All modular equations Fj,(X,Y") in Table 1 except the case p = 2 satisfies the congruence
relation

F(X,)Y)=(XP-Y)(X —Y?) (mod p)

for p = 3,5,7 and 11, which is called the Kronecker’s congruence. Including this property,
we discuss the modular equations of h(7).

Let I' = T'9(16). For any integer a with (a,2) = 1, we choose o, € SLa(Z) such that
0a=(2,"0) (mod 16) and o, € I'g(16). Under this condition, we may choose o, as

1 0 -5 -1 -3 —1 Y %
Ui1=i(0 1>70i3:i<6 3>,Ui5=i<6 5>7U:t7::|3(16 7)~

For any integer with (n,2) =1, by [22, Proposition 3.36] we have

10 a b
F<0 n)r U U T <O n/a>
0<aln 0<b<n/a
which is a disjoint union and [I\I'({2)T| = n]Lp(1+1/p). Let agp = 04q <8n’}a>.

Consider the polynomial

o, (X, 1) =[] JI X-=(oau(n)
0<aln 0<b<n/a
(a,b,n/a)=1
of degree n]J,, (1 +1/p). Note that the coefficients of ®,(X,7) are elementary symmet-
ric functions of f o agyp. Hence these are invariant under I', so they belong to Ag(I') =
C(h(r)). Thus, ®,(X,7) € C(h(7))[X] and we may write ®,,(X, h(7)) instead of @, (X, 7).
Since a19 = o01(§2) and (h o aig)(r) = h(r/n), we get ®,(h(r/n),h(r)) = 0 and
D, (h(7), h(nT)) = 0.
Let Sy, (respectively, Sy, 0) be the set of cusps which are poles (respectively, zeros) of
h(mt). In Lemma 2.7, we write a as

a=— Z ordgh(T).

SESI,oomSn,O

Multiplying ®,,(X, h(7)) by a suitable power of h(7), we get a polynomial in C[X, h(T)].
However, Lemma 2.6 shows that S . N .S,0 = ¢ for any positive odd integer n and a = 0.
Thus, regarding ®,, (X, h(7)) as a polynomial of X and h(7), we prove the following theorem.

Theorem 2.9. With the notation as above, let ©,(X,Y) be a polynomial such that &,
(h(7),h(nT)) =0 for a positive odd integer n. Then we obtain the following assertions:
(1) ©,(X,Y) € Z[X,Y] and degx ®,(X,Y) = degy ,(X,Y) =n]],(1+1/p).
(2) ©,(X,Y) is irreducible both as a polynomial in X over C(Y') and as a polynomial
inY over C(X).
(4) If n is not a square, then ®,(X,Y) is a polynomial of degree > 1 whose leading
coefficient is £1.
(5) (Kronecker’s congruence) Let p be an odd prime. Then

D,(X,Y) = (XP —Y)(X —YP) (mod pZ[X,Y]).
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Proof. Let I' = I'y(16). Since h(1) = ¢[[02,(1 — ¢™)72(1 — ¢*")(1 — ¢®) 71 (1 — ¢'%")2, we

write
oo
m
= § Cmq I
m=1

where ¢, € Z.
We first prove (1) and (2). Let ¢y be an automorphism of Q(Cn) over @ such that

V() = ¢ k for k relatively prime to n. By observing the action of o n/a on h, we see
that
a b at +b a’t + ab
(o6 i) = () = (5)
_ Z CmCabm a m/n7
m=1

it is natural that ¢, induces an automorphism vy, of Q(¢,)((¢"/™)) over Q(¢,) as

o (ne (5 ) 1) = 22 emtimani

Let b be an integer with 0 <V < a and b’ = bk (mod n/a). Then ab’ = abk (mod n) and

Ur(hoaey) = <hooa <8 n%))—% <h°<3 n?a))

a bV a V
= ho(o n/a>:hoa’a(o n/a>:hoaa7b/,

So, Vi (Pr (X, h(7))) = @p(X, (T )) and ®,, (X, h(1)) € Q((¢"/™))[X]. Moreover, we already
check that @, (h(7/n),h(7)) = 0 and [C(h (T/n),h(T)) C(h(7))] < d, where d = n]],,(1+

1/p).

For fixed a and b, since Lo,y € T'(§9)D, we can choose 7,7,7,5 € T satisfying
(6 9) Yap =7 @ap and (§9)vapa,, € T = To(16).

Let &, be an embedding of C(h(7/n), (7)) to the field of all meromorphic function on
$ containing C(h(r/n), h(1)) over C(h(7)) defined as &, (f) = f © V4. Then

ga,b(h) =h

&aaltlr/m) = s (o (5 ) () =ho (g 1) 20alr) = hoaus(r)

It means that hoagy # ho oy for (a,b) # (a/,b') and there exist distinct d embeddings
&ap of C(h(7/n), k(7)) over C(h(7)). Hence we have

[ (n(2).0m) :cthir)] =d=n]] (1 + ;)
pln

and ®@,,(X, h(7)) is irreducible over C(h(7)).

and
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Let F(X,Y) be the polynomial in Lemma 2.7. When f1(7) = h(7) and fo(7) = h(n7),
let a =—> cs _ns,,0rdsh(7). Then

F(X,Y) = CaaX"+ Y CiyX'Y7,
0<i<dn,
0<j<d1

where d; (respectively, d,,) is the total degree of poles of h(7) (respectively, h(n7)). Since
F(X,h(r)) is the minimal polynomial of h(r/n) over C(h(7)) and F(h(r/n),Y) is the
minimal polynomial of k(1) over C(h(r/n)), we have

h(7)"®n (X, (7)) = Cp ' JF (X, h(T)).
By using Lemma 2.6, we have a = 0 and F(X,Y) € Z[X,Y]. Hence ¢,(X,Y) € Z[X,Y],
so (1) and (2) are proved.

(3) Since (hooy, 0)(7) = h(nT), ®,(h(nT), (7)) = 0. Thus, we have that ®,,(h(7), h(T/n))
0 and h(7/n) is a root of ®,(h(7),X) = 0. By using that ®,(X,h(7)) € Z[X,h(7)] and
®,,(X, h(7)) is irreducible, we can take a polynomial G(X, h(7)) such that

(2.2) @, (h(7), X) = G(X, h(T)) @ (X, h(T))-
If we change the places of variables in (2.2) and multiplying it by G(X, h(7)), then
G(X, h(r)) x [G(h(7), X)Pn(h(T), X)] = G(X, h(T)) X P (X, h(7)) = Py (h(T), X).

So, G(X,Y) = 1 or —1. Suppose that G(X,Y) = —1. Then (2.2) is written as ®,(h(7), X) =
—®,(X,h(7)). If we substitute X = h(r), then ®,(h(7),h(7)) = —P,(h(7),h(r)) and
O, (h(1), (1)) = 0. So, h(r) is a root of ®,(X,h(r)) and X — h(7) is a factor of the
irreducible polynomial ®,(X,h(7)) with degree > 1. It is a contradiction, thus we have
G(X,Y) = 1. Therefore, ®,(h(1), X) = @, (X, h(7)).

(4) Note that
(2.3) W) = (o anp)(T) = ¢ — 2%/ + ca(q® — 2P /™) - .

Assume that n is not a square. Then the coefficient of the lowest degree term of ®,,(h(7), h(7))
is the product of 1 or —¢2 from (2.3); so it is a unit.

(5) Let p be an odd prime. We denote
f(r)=g(r) (mod a)

when f(7) — g(7) € aZ[G)((q7)) for f(7),9(r) € Z[G)((g7))-
For h(t) =Y 1 emq™ (¢m € Z), we have

(hoaip)(r) = Z Cmgzmq% = Z Cmq” (mod 1 — ()
m=1 m=1
= (hoaio)(7),

o [ee)

(hoapo)(T) = Z cm@@™ = Z cd ¢"™ = h(T)P  (mod p)

m=1 m=1
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and

9] p 00 oS
(hoaig)(r)P = (Zcmq?’f> =D "= cng™ (mod 1-¢)
m=1 m=1 m=1
= (7).

Therefore, we obtain that

Op(X,h(7)) = | ] (X = (hoap)(m)| (X = (hoapo)(r))
0<b<p

= (X = (hoao)(1)"(X —h(7)") (mod1=(p)
= (X7 = (hoaro)(n)’)(X = h(r)") (mod 1—¢p)
(XP = h(r))(X = h(r)") (mod 1 —(p).

In other words,

(2.4) (X, h(7)) = (XP = h(7))(X — h(1)")
is contained in (1 — (,)Z[X, h(7)]. Since ®,(X,Y) € Z[X,Y], all coefficients of (2.4) are
integers divisible by 1 — (,; so they are divisible by p. Thus, (5) is proved. O

3. THE RAY CLASS FIELD AND EVALUATION OF h(T)

Let K be an imaginary quadratic field and dg be the discriminant of K. For a positive
integer N, let Ky be the ray class field modulo N over K. In this section we first prove
that h(7/4) generates K4y over K for given 7 € K N § satisfying certain conditions. We
then investigate the value h(7) as an algebraic number.

Lemma 3.1. Let K be an imaginary quadratic field with discriminant dg and 7 € K N $H
be a root of the primitive equation ax® + bz + ¢ = 0 such that b*> — dac = dg, and let T' be
any congruence subgroup such that T(N) C T C T'1(N). Suppose that (N,a) = 1. Then the
field generated over K by all the values h(t), where h € Ag(I")q is defined and finite at T,
1s the ray class field modulo N over K.

Proof. See [4, Corollary 5.2]. O

In the proof of Theorem 1.3, we use the modular function h(7/4) which is a generator of
the field of modular functions on I'(4).

Proof of Theorem 1.3. Let f(7) := h(7/4). Then by Theorem 1.1, C(f(7)) = Ao(T'(4)).
For given 7 € K N § satisfying 16a7? + 4bt + ¢ = 0, where b?> — 4ac = df, (a,2) = 1
and a,b,c € Z, let 79 = 47. Then 19 € K N $H and 7( satisfies a¢§ + b1g + ¢ = 0, where
b? — dac = dg, (a,2) = 1 and a,b,c € Z. By Lemma 3.1, K(f(79)) is the ray class field
modulo 4 over K and K(f(r9)) = K(h(r9/4)) = K(h(7)). Hence K(h(7)) is the ray class
field modulo 4 over K for 7 satisfying that 16a7? + 4br + ¢ = 0, b*> — 4ac = dg, (a,2) = 1
and a,b,c € Z. O

Proof of Corollary 1.4. When Z[47] is the integral closure of Z in K, there exist b, c € Z
such that 1672 + 4b7 + ¢ = 0 and b?> — 4¢ = dg. By Theorem 1.3, K(h(7)) is the ray class
field modulo 4 over K. O
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Lemma 3.2. The Hauptmodul of Ag(T'1(4)) is (1/h(7/4) 4+ 2)* = 8.

Proof. Let H(1) = n=8(1)n**(27)n~1%(47). By Lemmas 2.2 and 2.3, H(7) generates the
field of modular functions on I'g(4). Since I'g(4) = £I'1(4), we have C(H (7)) = Ao(I'1(4)).

Consider H(47) as a modular function on I'g(16). Then by Theorem 1.1, the field
C(H(41),h(1)) = Ap(T'0(16)). By checking the behavior of H (47) at the cusps using Lemma
2.3, we get that

orde H (47) = —4 and ord, g H (47) = 4.

Lemma 2.7 gives us the polynomial
(3.1) FX,)Y)= Y CiX'v/,

0<i<1
0<j<4

where F(H(47),h(7)) = 0 and C; ; € C. Hence we may assume that C 4 = 1 from Lemma
2.7 (1). When we substitute the g-expansions of H(47) and h(7) for X and Y, respectively,
in (3.1); we obtain

F(X,Y)=—-1-8Y —24Y? - 32Y3 — 16Y* + XY*

H(4r) = <2+h(17)>4.

Since the g-expansion of H(7) is ¢~ + 8 + 20q 4+ O(¢?),

1 4
H(r)—-8= <2 + > -8
h(r/4)
is the Hauptmodul on T'y(4). O

and

Proposition 3.3. Let K be an tmaginary quadratic field with discriminant dg and t =

N (j1,n) be the Hauptmodul of Ao(T'1(N)). Let s be a cusp of T'1(N) whose width is hs and

Sr, () be the set of inequivalent cusps of T1(N)\$*. Ift € ¢ 'Z[q]] and [Tses, ( )7{m}(t(z)—
1 n

t(s)) is a polynomial in Z[t], then t(1) is an algebraic integer for T € K N §.
Proof. See [15, Theorem 5]. O

Proof of Theorem 1.5. Asin the proof of Lemma 3.2 , let H(7) = n~8(7)n**(27)n~16(47).
We already know that
ordgH (1) =0 and ord; o H(7) = 1
In detail, we have
-1 . 1
HO =t = () ) =t 1 ()
24 1
m\T7R (1-
— lim ) m 16- H "
T—00 T*}OO — — g1
(- (~) (1= —as)

Assume that ¢(7) is the Hauptmodul on T'y (4). Then t(7) = H(7)—8 = (1/h(7/4) + 2)* 8.
The polynomial defined in Proposition 3.3 is

[T & —t(s) =t = (H(©0) = 8))'(t - (H(1/2) — 8)) = (t - 8)"(t +8) € Z[t];

s€{0,1/2}
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this is because ho = 4 and hy /o = 1. Hence for 7 € K N $, t(7) and (1/h(7/4) + 2)* are
algebraic integers in a suitable number field. Therefore the result follows. U

Hereafter, to evaluate h(7) we briefly present an algorithm by using Shimura’s reciprocity
law. For more details, one can refer to [4, 12], which explain the action of Galois group
Gal(K(y)/K) to find its class polynomial.

Let §n be the field of automorphic functions of level N whose Fourier coefficients with
respect to e2 /N belong to Q(¢n) and § = UF_,;§n. For an imaginary quadratic field K
with discriminant dg, let

o — @ ifdge =0 (mod 4),
% ifdg =1 (mod 4).
Then we may write X2+ BX + C = 0 as the primitive equation of § with B, C' € Z. Define

a group

S t

Then, over the Hilbert class field H of K there is a surjective homomorphism
WNﬂ — Gal(K(N)/H)
o« e (f(6) > £70))
for f € Fn. Note that the kernel T' of this homomorphism is

Wi = {(t - Bs _CS> € GLo(Z/NZ) : t,s € Z/NZ} .

10 0 -1 .
+ 0 1) + 10 > if K =Q(v-1),
10 -1 -1 0 —1 .
T:.= + 0 1 , 1 0 ,:I:(1 1)} it K =Q(v-3),
10 .
+ 01 } otherwise.
Let Q@ = [a,b,c] be a primitive positive definite quadratic form of discriminant dx and

7Q = (—b+ Vdk)/2a € H. Then we define ug = (up), € [[, GL2(Z,) as follows:
e dig =0 (mod 4)

a b/2 .
up = _ﬁ/2 _OC if plaandpfte,
—a—b/2 _C_b/2> if plaandp|ec,
1 —1
e dx =1 (mod 4)
a (—1410)/2 .
0 1 if pta,
up = (—1;1))/2 _OC ifplaandpte,

_a+(—11—b)/2 —c—(—11+b)/2> ifpaandp|e
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Now we have an isomorphism between the form class group C(dk) of discriminant dy and
the Galois group Gal(H/K) defined as

Cldg) — Gal(H/K)
Q7" = (f(0) = fU2(q))
for any f € § satisfying f(0) € H. From that Gal(Ky)/K)/Gal(Kn)/H) = Gal(H/K),
we have the following conclusion.
Lemma 3.4. With the notation as above, we deduce that for f € §n,
{fove(rq) : € Whyp/T,Q € Cldk)}
is the set of all conjugates of f(6) over K.

In this situation, for f € §u, the polynomial

(3.2) Fe(X) = [ (X - f*"e(rq) € K[X]

aEWnN,9/T

QEeC(dx)
is the minimal polynomial of f(0) over K. Let f(7) = 1/h(7/4). Assume that K is an
imaginary quadratic field with dg = 0 (mod 4). Then f(f) € R since § = /dx /2 and
e?™9/4 ¢ R. By applying f(7) to the equation Fy(X) defined in (3.2), we know that

0=Fy(f(9) = Fu(f(0) = Fa(f(6)) = Fa(f(0))

and Fy(X) € (K NR)[X] = Q[X]. Note that for 7 € K N, f(7) is an algebraic integer by
Theorem 1.5. Hence we may assume that Fy(X) € Z[X], and it makes us easy to determine
the minimal polynomial by approximation. The following is one example for finding Fy(X).

Example 3.5. Let K = Q(v/—1) be an imaginary quadratic field, K be the ray class
field of K modulo 4 and Fy(X) be the class polynomial with Fy(1/h(/—1/4)) = 0. Then
Fy(X)=X?-38.

Solution. For K = Q(v/—1), we have dx = —4. We can take a positive definite quadratic
form @ with discriminant —4 as @ = [1,0,1]. Let § = 79 = v/—1 and u, = (} ) for a
prime p. Since #? +1 =0, let B =0 and C = 1. Then

voa={=(6 =0 )= )= D)
wor =0 1)]-[C 2]}

Thus, the polynomial Fy(X) is
34+2i
Fu(X)= (X - f(i)) [ X -
100 =0 - 70) (x -1 (552))
~ X2 —0.000000002 X + 4.678495626 - 107125 X — 7.999999996 — 1.323278393 - 10~ 11
X2 -8,
where f(7) = 1/h(7/4). O

and
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Proof of Theorem 1.6. Let r € Q. First we explain the method for getting the value
h(r7) if the value h(7) is given in terms of radicals. One can use the algorithm in [17,
Algorithm 1.6]. Suppose that the value h(7) is expressed in terms of radicals. We can write
h(r7) in terms of radicals by using the algorithm [17, Algorithm 1.6].

Assume that K is an imaginary quadratic field with discriminant dx = 0 (mod 4). Let
0 = di/2. For all 7 € KN$H, 7 can be written as 7 = (b + cf)/a, where a,b,c € Z
and a,c > 0. By the algorithm using the Shimura’s reciprocity law, we can find the value
h(0/4) in terms of radicals by the minimal polynomial of the ray class field Ky modulo
4 over K. From the modular equation Fy(X,Y) we obtain the value h(#), and then by
F.(X.,Y), h(ch) = h(b+ cf) is obtained. At last, by using F,(X,Y’), we write the value
h(1) = h((b+ cf)/a) in terms of radicals.

If n = 1 or n is a square free positive integer with n = 3 mod 4, then the field K =
Q(v/—n) has the discriminant dx = 0 (mod 4). Hence, all r/—n € K and we get the value
h(rv/—n) in terms of radicals, immediately. O

Example 3.6. We can find the value of h(7) as follows:
(1) h(i/4) = 1/2v/2 and h((8 + v/—1)/20) = —1/2v/2,
(2) h(3) =4 (1+VI-V1+3V3) (v2-1).
Solution. (1) In Example 3.5, we can conclude that {h(v/—1/4),h((8 ++/—1)/20)} =
{+1/2v2} . Since
h(v/—1/4) ~ 0.3535533904

and
h((8 + v/—1)/20) ~ —0.3535533909 + 5.848119541 - 10134,
we get that h(i/4) = 1/2v/2 and h((8 + v/—1)/20) = —1/2v/2.

(2) We use the modular equation of level 2:
F(X,Y)=X?-Y(1+4X)(1+2Y).
Since Fy(h(i/4),h(i/2)) = 0, by solving the equation F»(1/2v/2,z) = 0, we get two

Z€eros:
1
-3 <1 V244443 \/i) (\/i _ 1) ~ —0.5473017788,
1
-4 (1 +vV2—-\/4+3 ﬁ) (ﬁ - 1) ~ 0.04730177875.

By calculating that h(i/2) ~ 0.4730177873, we get that

h(i)——i <1+f— 4+3\/§) (v2-1).

2
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