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A LEVEL 16 ANALOGUE OF RAMANUJAN SERIES FOR 1/π

YOONJIN LEE AND YOON KYUNG PARK

Abstract. The modular function

h(τ) = q

∞∏

n=1

(1− q16n)2(1− q2n)

(1− qn)2(1− q8n)

is called a level 16 analogue of Ramanujan’s series for 1/π. We prove that h(τ) generates
the field of modular functions on Γ0(16) and find its modular equation of level n for any
positive integer n. Furthermore, we construct the ray class field K(h(τ)) modulo 4 over
an imaginary quadratic field K for τ ∈ K ∩ H such that Z[4τ ] is the integral closure of
Z in K, where H is the complex upper half plane. For any τ ∈ K ∩ H, it turns out that
the value 1/h(τ) is integral, and we can also explicitly evaluate the values of h(τ) if the
discriminant of K is divisible by 4.

1. Introduction

In [21], Ramanujan studied the series converging to 1/π:

1

π
=

1

16

∞∑
n=0

(
2n

n

)3 42n+ 5

212n
.

The coefficient
(
2n
n

)3
appearing in the above series is the same as the coefficient appearing

in the following identity

q
d

dq
log

(
ω

1− 16ω

)
=

∞∑
n=0

(
2n

n

)3

(ω(1− 16ω))n ,

where

ω(τ) = q

∞∏
n=1

(1− qn)8(1− q4n)16

(1− q2n)24
,

q = e2πiτ and τ ∈ H := {τ ∈ C : Im(τ) > 0}. Actually, ω(τ) generates the field of modular
function on Γ0(4) with a simple zero at ∞ and a simple pole at 1/2.

These types of identities for 1/π have been studied: for levels 1, 2 and 3 by Berndt-
Bhargava-Garvan [1], for levels 5, 6, 8 and 9 by Chan-Cooper [3], for levels 7, 10 and 18 by
Cooper [6, 7], for levels 11 and 23 by Cooper-Ge-Ye [8] and for levels 12, 13, 14 and 15 by
Cooper-Ye [9, 10, 11].
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Recently, Ye studied a modular function h(τ) of level 16 [23]:

(1.1) h(τ) = q
∞∏
n=1

(1− q16n)2(1− q2n)

(1− qn)2(1− q8n)
.

This modular function h(τ) is called a level 16 analogue of Ramanujan’s series for 1/π. He
showed that the coefficient An appearing in the series (1.3) converging to 1/π is exactly the
same as the coefficient An appearing in (1.2), where

(1.2) q
d

dq
log

(
h

(1 + 2h)(1 + 4h)

)
=

∞∑
n=0

An

(
h(1 + 2h)(1 + 4h)

(1− 8h2)2

)n

,

(1.3)
1

π
=

1

8
√
14

∞∑
n=0

An
48n+ 13

56n
.

For its proof, he proved several identities between h(τ) and some η-quotients, and he found
modular equations of h(τ) of levels 2, 4 and 8.

In this paper we study the modular function h(τ) of level 16. We first prove that h(τ)
generates the field of modular functions on Γ0(16) (Theorem 1.1), and we find the modular
equations of level n for any positive integer n (Theorem 1.2). We find examples for levels
2, 3, 5, 7 and 11 in Table 1 using MAPLE program. On the other hand, we use h(τ) to get
the ray class field modulo 4 over an imaginary quadratic field K (Theorem 1.3, Corollary
1.4). We show that the value 1/h(τ) is an algebraic integer in a certain number field
(Theorem 1.5). If h(τ) can be written in terms of radicals, then we can write h(rτ) in terms
of radicals for any positive rational number r by using the algorithm in [17, Algorithm 1.6].
Furthermore, we can get the value h(τ) for τ ∈ K ∩ H when K has discriminant divisible
by 4 (Theorem 1.6).

We state our main results as follows.

Theorem 1.1. Let h(τ) be defined in (1.1). Then h(τ) is a modular function on Γ0(16)
and the field of modular functions on Γ0(16) is C(h(τ)).

Theorem 1.2. For any positive integer n, we can obtain a modular equation Fn(X,Y ) of
h(τ) of level n in an explicit way.

Theorem 1.3. Let K be an imaginary quadratic field with discriminant dK . Let τ ∈ K∩H
be a root of the equation 16ax2 + 4bx + c = 0 such that b2 − 4ac = dK , (a, b, c) = 1 and
(a, 2) = 1, where a, b, c ∈ Z. Then K(h(τ)) is the ray class field modulo 4 over K.

Corollary 1.4. Let K be an imaginary quadratic field. If Z[4τ ] is the integral closure of Z
in K, then K(h(τ)) is the ray class field modulo 4 over K.

Theorem 1.5. Let K be an imaginary quadratic field. Then 1/h(τ) is an algebraic integer
for any τ ∈ K ∩ H.
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Theorem 1.6. We can explicitly evaluate the value of h(τ) for any τ ∈ K ∩ H if the
discriminant of K is divisible by 4. If h(τ) is expressed in terms of radicals, then we can
express h(rτ) in terms of radicals for any positive rational number r. In particular, if n = 1
or n is a square free positive integer with n �≡ 3 (mod 4), then we can evaluate h(r

√−n)
for any positive rational number r.

2. A modular function of level 16

We recall some definitions and properties in the theory of modular functions. Let H∗ :=
H ∪ Q ∪ {∞}. For a positive integer N , the congruence subgroup Γ0(N) is a subgroup of
SL2(Z) defined by

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : N | c

}
.

A element γ =
(
a b
c d

)
of Γ0(N) acts on H∗ by a linear fractional transformation: γτ =

(aτ + b)/(cτ + d). We call an element s ∈ Q ∪ {∞} a cusp. If there exists γ ∈ Γ0(N)
satisfying γs1 = s2, then two cusps s1 and s2 are equivalent under Γ0(N). In fact, there are
at most finitely many inequivalent cusps of Γ0(N). The width h of a cusp s in Γ0(N)\H∗ is
the smallest positive integer satisfying that ρ−1

(
1 h
0 1

)
ρ ∈ Γ0(N) for some ρ ∈ SL2(Z) with

ρ(s) =∞. Indeed, the width of the cusp s depends only on the equivalent class of s under
Γ0(N), and it does not depend on the choice of ρ.

A modular function f(τ) on Γ0(N) is a C-valued function of H satisfying the following
three conditions:

(1) f(τ) is meromorphic on H.
(2) f(τ) is invariant under Γ0(N), i.e., f(γτ) = f(τ) for all γ ∈ Γ0(N).
(3) f(τ) is meromorphic at all cusps of Γ0(N).

The order of f(τ) at a cusp is calculated as follows. Let s be a cusp of Γ0(N), f(τ) be a
modular function on Γ0(N), h be the width of s, and ρ be an element of SL2(Z) such that
ρ(s) =∞. Note that

(f ◦ ρ−1)(τ + h) =

(
f ◦ ρ−1

(
1 h
0 1

)
ρ

)
(ρ−1τ) = (f ◦ ρ−1)(τ)

and f ◦ ρ−1 has a Laurent series expansion in qh = e2πiτ/h, i.e., (f ◦ ρ−1)(τ) =
∑

n≥n0
anq

n
h

with an0 �= 0. Then we call n0 the order at the cusp s of f(τ) and denote by ordsf(τ).
Let A0(Γ0(N)) be the field of all modular functions on Γ0(N) and A0(Γ0(N))Q be the

subfield of A0(Γ0(N)) which consists of all modular functions f(τ) whose Fourier coefficients
belong to Q. The field A0(Γ0(N)) may be identified with the field C(Γ0(N)\H∗) of all mero-
morphic functions on the compact Riemann surface Γ0(N)\H∗. When f(τ) ∈ A0(Γ0(N))
is nonconstant, the extension degree [A0(Γ0(N)) : C(f(τ))] is equal to the total degree of
poles of f(τ). Hence, if a modular function f(τ) of Γ0(N) has neither zeros nor poles on H,
then

[A0(Γ0(N)) : C(f(τ))] = −
∑

s is a cusp of Γ0(N),

ordsf(τ)<0

ordsf(τ).

From the following lemma we can find the set of all inequivalent cusps of Γ0(N) and the
width of each cusp.
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Lemma 2.1. Let a, c, a′, c′ ∈ Z be such that (a, c) = 1 and (a′, c′) = 1. We understand that
±1/0 =∞. We denote by SΓ0(N) a set of all the inequivalent cusps of Γ0(N). Then

(1) a/c and a′/c′ are equivalent under Γ0(N) if and only if there exist s ∈ (Z/NZ)×

and n ∈ Z such that (a′, c′) ≡ (s−1 · a+ nc, s · c) (mod N).
(2) We can take SΓ0(N) as the following set

SΓ0(N) =
{ac,j

c
∈ Q : 0 < c | N, 0 < ac,j ≤ N, (ac,j , N) = 1,

ac,j = ac,j′
def.⇔ ac,j ≡ ac,j′ (mod (c,N/c))

}
.

(3) The width of the cusp a/c ∈ SΓ0(N) is N/(N, c2).

Proof. See [5, Corollary 4 (1)]. �
The Dedekind eta function is defined by

η(τ) := q
1
24

∞∏
n=1

(1− qn).

The following two lemmas present some information on the modularity and the behavior of
an eta-quotient.

Lemma 2.2. Let f(τ) =
∏

δ|N η(δτ)rδ be an eta-quotient, where k = 1
2

∑
δ|N rδ ∈ Z and

s =
∏

δ|N δrδ , with the additional properties that

(1)
∑

δ|N δrδ ≡ 0 (mod 24), and

(2)
∑

δ|N
N
δ rδ ≡ 0 (mod 24).

Then f(τ) satisfies

f

(
aτ + b

cτ + d

)
=

(
(−1)ks

d

)
(cτ + d)kf(τ)

for any
(
a b
c d

) ∈ Γ0(N).

Lemma 2.3. Let c, d and N be positive integers with d | N and (c, d) = 1. If f(τ) is an
eta-quotient satisfying the conditions of Lemma 2.2, then the order of vanishing of f(τ) at
the cusp c/d is

N

24

∑
δ|N

(d, δ)2 · rδ
(d,N/d) · dδ .

The proof of Lemma 2.2 is found in [13, 19, 20], and the proof of Lemma 2.3 is given in
[2, 16, 18].

Proof of Theorem 1.1. Note that h(τ) is written as η(τ)−2η(2τ)η(8τ)−1η(16τ)2. By
Lemma 2.2, for any γ ∈ Γ0(16), h(γτ) = h(τ). Since η(τ) is holomorphic on H∗ with only
zero at cusps, h(τ) is a modular function on Γ0(16). By Lemma 2.1 (2), the set SΓ0(16) of
inequivalent cusps of Γ0(16) can be taken as

SΓ0(16) =

{
∞, 0,

1

2
,
1

4
,
3

4
,
1

8

}
.

Furthermore, Lemma 2.3 shows that h(τ) has the only simple pole at 0 and the only simple
zero at ∞. Hence [A0(Γ0(16)) : C(h(τ))] = 1 and the field A0(Γ0(16)) is generated by
h(τ). �



A LEVEL 16 ANALOGUE OF RAMANUJAN SERIES FOR 1/π 5

For the simplicity, we call the Hauptmodul the normalized generator of a genus zero
function field with q-series q−1 + 0 +

∑∞
n=1 cnq

n. Since 1/h(τ) has a pole at ∞ and its
q-series is q−1− 2+ 2q3− q7 + · · · , we see that 1/h(τ)+ 2 is the Hauptmodul of Γ0(16). By
Theorem 1.1 we get another proof of [23, Theorem 3.3 (1)].

Proposition 2.4.

h

(
τ +

1

2

)
= − h(τ)

1 + 4h(τ)
.

Proof. By the definition of h(τ),

H(τ) := h

(
τ +

1

2

)
= −η2(τ)η2(4τ)η2(16τ)

η5(2τ)η(8τ)
.

Using Lemma 2.3, H(τ) is a modular function on Γ0(16) with only zero at∞ and only pole
at 1/2. From that 1/H(τ) = −q−1 − 2 − 2q3 + q7 + · · · , we note that −1/H(τ) − 2 is the
Hauptmodul on Γ0(16). By solving 1/h(τ) + 2 = −1/H(τ)− 2, we obtain that

h

(
τ +

1

2

)
= − h(τ)

1 + 4h(τ)
.

�
We need the following lemma to have the existence of an affine plane model defined over

Q, which will be called the modular equation.

Lemma 2.5. Let n be a positive integer. Then we get

Q(h(τ), h(nτ)) = A0(Γ0(16n))Q.

Proof. For any α ∈ GL+
2 (Q), h(ατ) = h(τ) if and only if α ∈ Q× · Γ0(16) since Q(h(τ)) =

A0(Γ0(16))Q. For βn = ( n 0
0 1 ), we get that

Γ0(16) ∩ β−1
n Γ0(16)βn = Γ0(16n).

Hence h(τ) and h(nτ) = h ◦ βn(τ) belong to A0(Γ0(16n)).
It is sufficient to show that

Q(h(τ), h(nτ)) ⊃ A0(Γ0(16n)).

We choose Mi ∈ Γ0(16) and write Γ0(16) =
⋃

i Γ0(16n) · Mi as a disjoint union. Let
x(τ) := h(nτ) = (h ◦ βn)(τ).

Suppose that we can choose distinct indices i and j such that

(2.1) x ◦Mi = x ◦Mj .

Then

h ◦ βn ◦Mi = h ◦ βn ◦Mj

⇒ h = h ◦ βnMjM
−1
i β−1

n

⇒ βnMjM
−1
i β−1

n ∈ Q× · Γ0(16)

⇒ MjM
−1
i ∈ β−1

n Γ0(16)βn.

As Mi,Mj ∈ Γ0(16), we have MjM
−1
i ∈ Γ0(16n), and it is a contradiction to (2.1). There-

fore all functions x ◦Mi are distinct, and h(τ) and h(nτ) generate the field A0(Γ0(16n))Q
over Q. �
Lemma 2.6. Let a, c, a′, c′ ∈ Z and h(τ) as above. Then we have the following assertions.
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(1) h(τ) has a pole at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) = 1 and
(2, c) = 1.

(2) h(nτ) has a pole at a′/c′ ∈ Q ∪ {∞} if and only if there exist a, c ∈ Z such that
a/c = na′/c′, (a′, c′) = 1 and (2, c) = 1.

(3) h(τ) has a zero at a/c ∈ Q∪ {∞} with (a, c) = 1 if and only if (a, c) = 1 and 16 | c.
(4) h(nτ) has a zero at a′/c′ ∈ Q ∪ {∞} if and only if there exist a, c ∈ Z such that

a/c = na′/c′, (a′, c′) = 1 and 16 | c.
Proof. We note that h(τ) has the only pole at a/c ∈ Q∪{∞} such that a/c is equivalent to
0 under Γ0(16). By Lemma 2.1, (a, c) ≡ (n, s) (mod 16) for some s ∈ (Z/16Z)× and n ∈ Z.
Hence (a, c) = 1, (2, c) = 1 and we have (1) and (2).

We use that h(τ) has the only zero at a/c ∈ Q ∪ {∞} such that a/c is equivalent to ∞
under Γ0(16). For this we have the pair (a, c) such that (a, c) ≡ (s, 0) (mod 16) for some
s ∈ (Z/16Z)×. In other words, h(τ) has the zero at a/c such that (a, c) = 1 and c ≡ 0
(mod 16). So, we get (3) and (4). �

Let dm be the total degree of poles of h(mτ) for any positive integer m. We focus on
finding a modular equation which gives the relation between h(τ) and h(nτ). Then the
following lemma gives a polynomial Fn(X,Y ) and some information on its coefficients. In
detail,

Fn(X,Y ) =
∑

0≤i≤dn
0≤j≤d1

Ci,jX
iY j ∈ Q[X,Y ].

In [14], Ishida-Ishii shows the following lemma using the theory of algebraic functions. This
lemma is useful in checking which coefficient Ci,j is zero or nonzero in Fn(X,Y ).

Lemma 2.7. For any congruence subgroup Γ, let f1(τ) and f2(τ) be nonconstants such that
C(f1(τ), f2(τ)) = A0(Γ) with the total degree Dk of poles of fk(τ) for k = 1, 2. Let

F (X,Y ) =
∑

0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X,Y ]

be such that F (f1(τ), f2(τ)) = 0. Define the subsets Sk,0 and Sk,∞ of the set SΓ of all
inequivalent cusps of Γ by

Sk,0 := {s ∈ SΓ : fk(τ) has zeros at s}
and

Sk,∞ := {s ∈ SΓ : fk(τ) has poles at s}
for k = 1, 2. Let

a = −
∑

s∈S1,∞∩S2,0

ordsf1(τ) and b =
∑

s∈S1,0∩S2,0

ordsf1(τ).

We assume that a (respectively, b) is zero if S1,∞ ∩ S2,0 (respectively, S1,0 ∩ S2,0) is empty.
Then we obtain the following assertions.

(1) CD2,a �= 0. In addition, if S1,∞ ⊂ S2,∞ ∪ S2,0, then CD2,j = 0 for any j �= a.
(2) C0,b �= 0. In addition, if S1,0 ⊂ S2,∞ ∪ S2,0, then C0,j = 0 for any j �= b.
(3) Ci,D1 = 0 for 0 ≤ i < |S1,0 ∩ S2,∞|, D2 − |S1,∞ ∩ S2,∞| < i ≤ D2.
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(4) Ci,0 = 0 for 0 ≤ i < |S1,0 ∩ S2,0|, D2 − |S1,∞ ∩ S2,0| < i ≤ D2.
If we interchange the roles of f1(τ) and f2(τ), then we may have more properties

similar to (1)-(4). Suppose that there exist r ∈ R and N,n1, n2 ∈ Z with N > 0
such that

fj(τ + r) = ζ
nj

N fj(τ)

for j = 1, 2, where ζN = e2πi/N . Then we get the following assertion:
(5) If n1i+n2j �≡ n1D2+n2a (mod N), then Ci,j = 0. Here note that n2b ≡ n1D2+n2a

(mod N).

Proof. See [14, Lemmas 3 and 6]. �
The modular equation of level 2. In Lemma 2.7, let f1(τ) = h(τ) and f2(τ) =

h(2τ). By Lemma 2.5, Q(f1(τ), f2(τ)) = A0(Γ0(32)), and we may take the set SΓ0(32) of
inequivalent cusps of Γ0(32) as follows:

SΓ0(32) =

{
∞, 0,

1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
1

16

}
.

From Lemma 2.3, we have

ord∞f1(τ) = 1, ord1/16f1(τ) = 1, ord0f1(τ) = −2,
ord∞f2(τ) = 2, ord0f2(τ) = −1, and ord1/2f2(τ) = −1.

Hence we have the polynomial

F2(X,Y ) =
∑

0≤i,j≤2

Ci,jX
iY j

such that F2(f1(τ), f2(τ)) = 0. Since there is no point s such that ordsf1(τ) < 0 and
ordsf2(τ) > 0, C2,0 �= 0, and C2,1 = C2,2 = 0. In a similar way, by using that both f1(τ)
and f2(τ) have a zero at ∞ with ord∞f1(τ) = 1, we obtain that C0,1 �= 0. Without loss of
generality, we may assume that C2,0 = 1. Replacing X and Y by q-expansions of h(τ) and
h(2τ) in

F2(X,Y ) = X2 + C1,2XY 2 + C1,1XY + C1,0X + C0,2Y
2 + C0,1Y + C0,0,

then we can determine the remaining coefficients Ci,j as follows:

C0,1 = −1, C0,2 = −2, C1,1 = −4, C1,2 = −8, C1,0 = 0, C0,0 = 0.

Thus, we get
F2(X,Y ) = X2 − Y (1 + 4X)(1 + 2Y ).

So the modular equation of level 2 of h(τ) is

h2(τ)

1 + 4h(τ)
= h(2τ)(1 + 2h(2τ)).

Theorem 2.8. Let p be an odd prime and Fn(X,Y ) be the irreducible polynomial satisfying
Fn(h(τ), h(nτ)) = 0. Then

Fp(X,Y ) =
∑

0≤i,j≤p+1

Ci,jX
iY j ∈ Q[X,Y ]

and

(1) Cp+1,0 �= 0 and C0,p+1 �= 0.
(2) Cp+1,j = Cj,p+1 = 0 if j = 1, . . . , p+ 1.
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(3) C0,j = Cj,0 = 0 if j = 0, . . . , p.

Proof. For an odd prime p, let SΓ0(16p) be the set of all inequivalent cusps of Γ0(16p). Then
by Lemma 2.1 all the elements of SΓ0(16p) are∞, 0, 1/2, 1/4, 3/4, 1/8, 1/16, 1/p, 1/2p, 1/4p, 3/4p
and 1/8p with widths 1, 16p, 4p, p, p, p, p, 16, 4, 1, 1 and 1, respectively. SinceQ(h(τ), h(pτ)) =
A0(Γ0(16p)), we have

ord0h(τ) = −p, ord1/ph(τ) = −1, ord1/16h(τ) = p, ord1/16ph(τ) = 1

and

ord0h(pτ) = −1, ord1/ph(pτ) = −p, ord1/16h(pτ) = 1, ord1/16ph(pτ) = p.

Thus, the modular equation Fp(X,Y ) is

Fp(X,Y ) =
∑

0≤i,j≤p+1

Ci,jX
iY j .

Consider f1(τ) = h(τ) and f2(τ) = h(pτ) in Lemma 2.7. Then we can take a = 0 and
b = p+ 1, so we get

(1) Cp+1,0 �= 0 and Cp+1,1 = Cp+1,2 = · · · = Cp+1,p+1 = 0,
(2) C0,p+1 �= 0 and C0,0 = C0,1 = · · · = C0,p = 0.

Similarly, if we let f1(τ) = h(pτ) and f2(τ) = h(τ), then a = 0 and b = p+ 1. Moreover,

(1) C0,p+1 �= 0 and C1,p+1 = C2,p+1 = · · · = Cp+1,p+1 = 0,
(2) Cp+1,0 �= 0 and C0,0 = C1,0 = · · · = Cp,0 = 0.

Hence we proved (1), (2) and (3). �

Proof of Theorem 1.2. Let f1(τ) and f2(τ) be nonconstant modular functions satisfying
C(f1(τ), f2(τ)) = A0(Γ) for some congruence subgroup Γ. Then

[C(f1(τ), f2(τ)) : C(fj(τ))] = dj ,

where dj is the total degree of poles of fj(τ) on Γ\H∗ and j = 1, 2. Hence there exists
a polynomial Φ(X,Y ) ∈ C[X,Y ] such that Φ(f1(τ), Y ) (respectively, Φ(X, f2(τ))) is a
minimal polynomial of f2(τ) (respectively, f1(τ)) over C(f1(τ)) (respectively, C(f2(τ))) with
degree d1 (respectively, d2). Let f1(τ) = h(τ) and f2(τ) = h(nτ). Then by using Lemma 2.5,
we may consider a polynomial Fn(X,Y ) ∈ Q[X,Y ] such that Fn(h(τ), h(nτ)) = 0 for any
positive integer n. Here, degX Fn(X,Y ) = d2 and degY Fn(X,Y ) = d1. This polynomial
Fn(X,Y ) is the modular equation of h(τ) of level n for every positive integer n. �

Using Theorem 2.8, we get the modular equations of level p which are presented in Table
1 when p = 2, 3, 5, 7 and 11.
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Table 1. The modular equations Fp(X,Y ) of h(τ) of levels 2, 3, 5, 7 and 11

p The modular equation Fp(X,Y ) of h(τ) of level p

2 X2 − Y (1 + 4X)(1 + 2Y )

3 (X3 − Y )(X − Y 3)

−3XY
(
2Y + 4Y 2 + 2X + 10XY + 16XY 2 + 4X2 + 16X2Y + 21X2Y 2

)
5 (X5 − Y )(X − Y 5)

−5XY ( 16Y 3 + 8X2 + 2Y + 8Y 2 + 14Y 4 + 2X + 20XY + 80XY 2 + 157XY 3 + 128XY 4

+80X2Y + 324X2Y 2 + 640X2Y 3 + 512X2Y 4 + 16X3 + 157X3Y + 640X3Y 2 + 1280X3Y 3

+1024X3Y 4 + 14X4 + 128X4Y + 512X4Y 2 + 1024X4Y 3 + 819X4Y 4 )

7 (X7 − Y )(X − Y 7)

−7XY ( 2X + 2Y + 12Y 2 + 40Y 3 + 84Y 5 + 40Y 6 + 78Y 4 + 12X2 + 40X3 + 78X4

+84X5 + 40X6 + 92160X5Y 4 + 672XY 6 + 180X2Y + 20480X6Y 3 + 29XY + 180XY 2

+620XY 3 + 1252XY 4 + 1396XY 5 + 1156X2Y 2 + 4120X2Y 3 + 8632X2Y 4 + 10016X2Y 5

+4992X2Y 6 + 620X3Y + 4120X3Y 2 + 15190X3Y 3 + 32960X3Y 4 + 39680X3Y 5 + 20480X3Y 6

+1252X4Y + 8632X4Y 2 + 32960X4Y 3 + 73984X4Y 4 + 92160X4Y 5 + 49152X4Y 6

+1396X5Y + 10016X5Y 2 + 39680X5Y 3 + 118784X5Y 5 + 65536X5Y 6 + 672X6Y + 4992X6Y 2

+49152X6Y 4 + 65536X6Y 5 + 37449X6Y 6 )

11 (X11 − Y )(X − Y 11)

−11XY ( 2Y + 2X + 20Y 2 + 120Y 3 + 478Y 4 + 1316Y 5 + 2520Y 6 + 3280Y 7

+2729Y 8 + 1270Y 9 + 236Y 10 + 20X2 + 120X3 + 478X4 + 1316X5 + 2520X6

+3280X7 + 2729X8 + 1270X9 + 236X10 + 407502848X6Y 9 + 480X2Y + 6242560X9Y 3

+10545728X8Y 3 + 1243548X2Y 8 + 10617267X3Y 7 + 36489216X4Y 9 + 335544320X10Y 8

+43122688X5Y 10 + 1006632960X9Y 8 + 1006632960X8Y 9 + 206867200X7Y 5 + 3000X3Y

+771751936X9Y 9 + 945184768X7Y 7 + 786432000X9Y 7 + 86758X8Y + 126141088X6Y 5

+230758X3Y 3 + 531390464X6Y 7 + 916956X6Y 2 + 531390464X7Y 6 + 251658240X7Y 10

+694064X9Y 2 + 10321920X10Y 4 + 268435456X9Y 10 + 71268X6Y + 35647X5Y

+97612893X10Y 10 + 46XY + 480XY 2 + 3000XY 3 + 12436XY 4 + 35647XY 5 + 71268XY 6

+97540XY 7 + 86758XY 8 + 44862XY 9 + 10160XY 10 + 5223X2Y 2 + 34014X2Y 3

+146872X2Y 4 + 438876X2Y 5 + 916956X2Y 6 + 1318216X2Y 7 + 694064X2Y 9 + 174656X2Y 10

+34014X3Y 2 + 1037872X3Y 4 + 3232300X3Y 5 + 7050856X3Y 6 + 10545728X3Y 8

+6242560X3Y 9 + 1679360X3Y 10 + 12436X4Y + 146872X4Y 2 + 1037872X4Y 3

+4860966X4Y 4 + 15767636X4Y 5 + 35860024X4Y 6 + 56406848X4Y 7 + 58685184X4Y 8

+10321920X4Y 10 + 438876X5Y 2 + 3232300X5Y 3 + 15767636X5Y 4 + 53252516X5Y 5

+126141088X5Y 6 + 206867200X5Y 7 + 224704512X5Y 8 + 146010112X5Y 9 + 7050856X6Y 3

+35860024X6Y 4 + 311101824X6Y 6 + 601587712X6Y 8 + 125304832X6Y 10 + 97540X7Y

+1318216X7Y 2 + 10617267X7Y 3 + 56406848X7Y 4 + 1114570752X7Y 8 + 786432000X7Y 9

+1243548X8Y 2 + 58685184X8Y 4 + 224704512X8Y 5 + 601587712X8Y 6 + 1114570752X8Y 7

+1369178112X8Y 8 + 335544320X8Y 10 + 44862X9Y + 36489216X9Y 4 + 146010112X9Y 5

+407502848X9Y 6 + 10160X10Y + 174656X10Y 2 + 1679360X10Y 3 + 43122688X10Y 5

+125304832X10Y 6 + 251658240X10Y 7 + 268435456X10Y 9 )
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All modular equations Fp(X,Y ) in Table 1 except the case p = 2 satisfies the congruence
relation

Fp(X,Y ) ≡ (Xp − Y )(X − Y p) (mod p)

for p = 3, 5, 7 and 11, which is called the Kronecker’s congruence. Including this property,
we discuss the modular equations of h(τ).

Let Γ = Γ0(16). For any integer a with (a, 2) = 1, we choose σa ∈ SL2(Z) such that
σa ≡

(
a−1 0
0 a

)
(mod 16) and σa ∈ Γ0(16). Under this condition, we may choose σa as

σ±1 = ±
(
1 0
0 1

)
, σ±3 = ±

(−5 −1
16 3

)
, σ±5 = ±

(−3 −1
16 5

)
, σ±7 = ±

(
7 3
16 7

)
.

For any integer with (n, 2) = 1, by [22, Proposition 3.36] we have

Γ

(
1 0
0 n

)
Γ =

⋃
0<a|n

⋃
0≤b<n/a

Γσa

(
a b
0 n/a

)

which is a disjoint union and |Γ\Γ ( 1 0
0 n ) Γ| = n

∏
p|n(1 + 1/p). Let αa,b = σa

(
a b
0 n/a

)
.

Consider the polynomial

Φn(X, τ) :=
∏

0<a|n

∏
0≤b<n/a

(a,b,n/a)=1

(X − (h ◦ αa,b)(τ))

of degree n
∏

p|n(1 + 1/p). Note that the coefficients of Φn(X, τ) are elementary symmet-

ric functions of f ◦ αa,b. Hence these are invariant under Γ, so they belong to A0(Γ) =
C(h(τ)). Thus, Φn(X, τ) ∈ C(h(τ))[X] and we may write Φn(X,h(τ)) instead of Φn(X, τ).
Since α1,0 = σ1 ( 1 0

0 n ) and (h ◦ α1,0)(τ) = h(τ/n), we get Φn(h(τ/n), h(τ)) = 0 and
Φn(h(τ), h(nτ)) = 0.

Let Sm,∞ (respectively, Sm,0) be the set of cusps which are poles (respectively, zeros) of
h(mτ). In Lemma 2.7, we write a as

a = −
∑

s∈S1,∞∩Sn,0

ordsh(τ).

Multiplying Φn(X,h(τ)) by a suitable power of h(τ), we get a polynomial in C[X,h(τ)].
However, Lemma 2.6 shows that S1,∞ ∩ Sn,0 = φ for any positive odd integer n and a = 0.
Thus, regarding Φn(X,h(τ)) as a polynomial ofX and h(τ), we prove the following theorem.

Theorem 2.9. With the notation as above, let Φn(X,Y ) be a polynomial such that Φn

(h(τ), h(nτ)) = 0 for a positive odd integer n. Then we obtain the following assertions:

(1) Φn(X,Y ) ∈ Z[X,Y ] and degX Φn(X,Y ) = degY Φn(X,Y ) = n
∏

n(1 + 1/p).
(2) Φn(X,Y ) is irreducible both as a polynomial in X over C(Y ) and as a polynomial

in Y over C(X).
(3) Φn(X,Y ) = Φn(Y,X).
(4) If n is not a square, then Φn(X,Y ) is a polynomial of degree > 1 whose leading

coefficient is ±1.
(5) (Kronecker’s congruence) Let p be an odd prime. Then

Φp(X,Y ) ≡ (Xp − Y )(X − Y p) (mod pZ[X,Y ]).
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Proof. Let Γ = Γ0(16). Since h(τ) = q
∏∞

n=1(1 − qn)−2(1 − q2n)(1 − q8n)−1(1 − q16n)2, we
write

h(τ) =
∞∑

m=1

cmqm,

where cm ∈ Z.
We first prove (1) and (2). Let ψk be an automorphism of Q(ζn) over Q such that

ψk(ζn) = ζkn for k relatively prime to n. By observing the action of
(

a b
0 n/a

)
on h, we see

that (
h ◦

(
a b
0 n/a

))
(τ) = h

(
aτ + b

n/a

)
= h

(
a2τ + ab

n

)

=

∞∑
m=1

cmζabmn qa
2m/n,

it is natural that ψk induces an automorphism ψk of Q(ζn)((q
1/n)) over Q(ζn) as

ψk

(
h ◦

(
a b
0 n/a

)
(τ)

)
=

∞∑
m=1

cmζabkmn qa
2m/n.

Let b′ be an integer with 0 ≤ b′ < a and b′ ≡ bk (mod n/a). Then ab′ ≡ abk (mod n) and

ψk(h ◦ αa,b) = ψk

(
h ◦ σa

(
a b
0 n/a

))
= ψk

(
h ◦

(
a b
0 n/a

))

= h ◦
(
a b′
0 n/a

)
= h ◦ σa

(
a b′
0 n/a

)
= h ◦ αa,b′ .

So, ψk(Φn(X,h(τ))) = Φn(X,h(τ)) and Φn(X,h(τ)) ∈ Q((q1/n))[X]. Moreover, we already
check that Φn(h(τ/n), h(τ)) = 0 and [C(h(τ/n), h(τ)) : C(h(τ))] ≤ d, where d = n

∏
p|n(1+

1/p).
For fixed a and b, since Γαa,b ⊂ Γ ( 1 0

0 n ) Γ, we can choose γ, γ′, γa,b ∈ Γ satisfying

γ ( 1 0
0 n ) γa,b = γ′αa,b and ( 1 0

0 n ) γa,bα
−1
a,b ∈ Γ = Γ0(16).

Let ξa,b be an embedding of C(h(τ/n), h(τ)) to the field of all meromorphic function on
H containing C(h(τ/n), h(τ)) over C(h(τ)) defined as ξa,b(f) = f ◦ γa,b. Then

ξa,b(h) = h,

and

ξa,b(h(τ/n)) = ξa,b

(
h ◦

(
1 0
0 n

)
(τ)

)
= h ◦

(
1 0
0 n

)
γa,b(τ) = h ◦ αa,b(τ).

It means that h ◦ αa,b �= h ◦ αa′,b′ for (a, b) �= (a′, b′) and there exist distinct d embeddings
ξa,b of C(h(τ/n), h(τ)) over C(h(τ)). Hence we have

[
C
(
h
( τ
n

)
, h(τ)

)
: C(h(τ))

]
= d = n

∏
p|n

(
1 +

1

p

)

and Φn(X,h(τ)) is irreducible over C(h(τ)).
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Let F (X,Y ) be the polynomial in Lemma 2.7. When f1(τ) = h(τ) and f2(τ) = h(nτ),
let a = −∑

s∈S1,∞∩S2,0
ordsh(τ). Then

F (X,Y ) = Cdn,aX
n +

∑
0≤i≤dn
0≤j≤d1

Ci,jX
iY j ,

where d1 (respectively, dn) is the total degree of poles of h(τ) (respectively, h(nτ)). Since
F (X,h(τ)) is the minimal polynomial of h(τ/n) over C(h(τ)) and F (h(τ/n), Y ) is the
minimal polynomial of h(τ) over C(h(τ/n)), we have

h(τ)aΦn(X,h(τ)) = C−1
dn,a

F (X,h(τ)).

By using Lemma 2.6, we have a = 0 and F (X,Y ) ∈ Z[X,Y ]. Hence Φn(X,Y ) ∈ Z[X,Y ],
so (1) and (2) are proved.

(3) Since (h◦αn,0)(τ) = h(nτ), Φn(h(nτ), h(τ)) = 0. Thus, we have that Φn(h(τ), h(τ/n)) =
0 and h(τ/n) is a root of Φn(h(τ), X) = 0. By using that Φn(X,h(τ)) ∈ Z[X,h(τ)] and
Φn(X,h(τ)) is irreducible, we can take a polynomial G(X,h(τ)) such that

(2.2) Φn(h(τ), X) = G(X,h(τ))Φn(X,h(τ)).

If we change the places of variables in (2.2) and multiplying it by G(X,h(τ)), then

G(X,h(τ))× [G(h(τ), X)Φn(h(τ), X)] = G(X,h(τ))× Φn(X,h(τ)) = Φn(h(τ), X).

So, G(X,Y ) = 1 or−1. Suppose thatG(X,Y ) = −1. Then (2.2) is written as Φn(h(τ), X) =
−Φn(X,h(τ)). If we substitute X = h(τ), then Φn(h(τ), h(τ)) = −Φn(h(τ), h(τ)) and
Φn(h(τ), h(τ)) = 0. So, h(τ) is a root of Φn(X,h(τ)) and X − h(τ) is a factor of the
irreducible polynomial Φn(X,h(τ)) with degree > 1. It is a contradiction, thus we have
G(X,Y ) = 1. Therefore, Φn(h(τ), X) = Φn(X,h(τ)).

(4) Note that

(2.3) h(τ)− (h ◦ αa,b)(τ) = q − ζabn qa
2/n + c2(q

2 − ζ2abn q2a
2/n) + · · · .

Assume that n is not a square. Then the coefficient of the lowest degree term of Φn(h(τ), h(τ))
is the product of 1 or −ζabn from (2.3); so it is a unit.

(5) Let p be an odd prime. We denote

f(τ) ≡ g(τ) (mod α)

when f(τ)− g(τ) ∈ αZ[ζp]((q
1
p )) for f(τ), g(τ) ∈ Z[ζp]((q

1
p )).

For h(τ) =
∑∞

m=1 cmqm (cm ∈ Z), we have

(h ◦ α1,b)(τ) =

∞∑
m=1

cmζbmp q
m
p ≡

∞∑
m=1

cmq
m
p (mod 1− ζp)

= (h ◦ α1,0)(τ),

(h ◦ αp,0)(τ) =

∞∑
m=1

cmqpm ≡
∞∑

m=1

cpmqpm ≡ h(τ)p (mod p)
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and

(h ◦ α1,0)(τ)
p =

( ∞∑
m=1

cmq
m
p

)p

≡
∞∑

m=1

cpmqm ≡
∞∑

m=1

cmqm (mod 1− ζp)

= h(τ).

Therefore, we obtain that

Φp(X,h(τ)) =

⎡
⎣ ∏
0≤b<p

(X − (h ◦ α1,b)(τ))

⎤
⎦ (X − (h ◦ αp,0)(τ))

≡ (X − (h ◦ α1,0)(τ))
p(X − h(τ)p) (mod 1− ζp)

≡ (Xp − (h ◦ α1,0)(τ)
p)(X − h(τ)p) (mod 1− ζp)

≡ (Xp − h(τ))(X − h(τ)p) (mod 1− ζp).

In other words,

(2.4) Φn(X,h(τ))− (Xp − h(τ))(X − h(τ)p)

is contained in (1 − ζp)Z[X,h(τ)]. Since Φn(X,Y ) ∈ Z[X,Y ], all coefficients of (2.4) are
integers divisible by 1− ζp; so they are divisible by p. Thus, (5) is proved. �

3. The ray class field and evaluation of h(τ)

Let K be an imaginary quadratic field and dK be the discriminant of K. For a positive
integer N , let K(N) be the ray class field modulo N over K. In this section we first prove
that h(τ/4) generates K(4) over K for given τ ∈ K ∩ H satisfying certain conditions. We
then investigate the value h(τ) as an algebraic number.

Lemma 3.1. Let K be an imaginary quadratic field with discriminant dK and τ ∈ K ∩ H
be a root of the primitive equation ax2 + bx+ c = 0 such that b2 − 4ac = dK , and let Γ′ be
any congruence subgroup such that Γ(N) ⊂ Γ′ ⊂ Γ1(N). Suppose that (N, a) = 1. Then the
field generated over K by all the values h(τ), where h ∈ A0(Γ

′)Q is defined and finite at τ ,
is the ray class field modulo N over K.

Proof. See [4, Corollary 5.2]. �

In the proof of Theorem 1.3, we use the modular function h(τ/4) which is a generator of
the field of modular functions on Γ(4).

Proof of Theorem 1.3. Let f(τ) := h(τ/4). Then by Theorem 1.1, C(f(τ)) = A0(Γ(4)).
For given τ ∈ K ∩ H satisfying 16aτ2 + 4bτ + c = 0, where b2 − 4ac = dK , (a, 2) = 1
and a, b, c ∈ Z, let τ0 = 4τ . Then τ0 ∈ K ∩ H and τ0 satisfies aτ20 + bτ0 + c = 0, where
b2 − 4ac = dK , (a, 2) = 1 and a, b, c ∈ Z. By Lemma 3.1, K(f(τ0)) is the ray class field
modulo 4 over K and K(f(τ0)) = K(h(τ0/4)) = K(h(τ)). Hence K(h(τ)) is the ray class
field modulo 4 over K for τ satisfying that 16aτ2 + 4bτ + c = 0, b2 − 4ac = dK , (a, 2) = 1
and a, b, c ∈ Z. �

Proof of Corollary 1.4. When Z[4τ ] is the integral closure of Z in K, there exist b, c ∈ Z
such that 16τ2 + 4bτ + c = 0 and b2 − 4c = dK . By Theorem 1.3, K(h(τ)) is the ray class
field modulo 4 over K. �
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Lemma 3.2. The Hauptmodul of A0(Γ1(4)) is (1/h(τ/4) + 2)4 − 8.

Proof. Let H(τ) = η−8(τ)η24(2τ)η−16(4τ). By Lemmas 2.2 and 2.3, H(τ) generates the
field of modular functions on Γ0(4). Since Γ0(4) = ±Γ1(4), we have C(H(τ)) = A0(Γ1(4)).

Consider H(4τ) as a modular function on Γ0(16). Then by Theorem 1.1, the field
C(H(4τ), h(τ)) = A0(Γ0(16)). By checking the behavior ofH(4τ) at the cusps using Lemma
2.3, we get that

ord∞H(4τ) = −4 and ord1/8H(4τ) = 4.

Lemma 2.7 gives us the polynomial

(3.1) F (X,Y ) =
∑

0≤i≤1
0≤j≤4

Ci,jX
iY j ,

where F (H(4τ), h(τ)) = 0 and Ci,j ∈ C. Hence we may assume that C1,4 = 1 from Lemma
2.7 (1). When we substitute the q-expansions of H(4τ) and h(τ) for X and Y , respectively,
in (3.1); we obtain

F (X,Y ) = −1− 8Y − 24Y 2 − 32Y 3 − 16Y 4 +XY 4

and

H(4τ) =

(
2 +

1

h(τ)

)4

.

Since the q-expansion of H(τ) is q−1 + 8 + 20q +O(q2),

H(τ)− 8 =

(
2 +

1

h(τ/4)

)4

− 8

is the Hauptmodul on Γ1(4). �
Proposition 3.3. Let K be an imaginary quadratic field with discriminant dK and t =
N (j1,N ) be the Hauptmodul of A0(Γ1(N)). Let s be a cusp of Γ1(N) whose width is hs and
SΓ1(N) be the set of inequivalent cusps of Γ1(N)\H∗. If t ∈ q−1Z[[q]] and

∏
s∈SΓ1(n)−{∞}(t(z)−

t(s))hs is a polynomial in Z[t], then t(τ) is an algebraic integer for τ ∈ K ∩ H.

Proof. See [15, Theorem 5]. �
Proof of Theorem 1.5. As in the proof of Lemma 3.2 , letH(τ) = η−8(τ)η24(2τ)η−16(4τ).
We already know that

ord0H(τ) = 0 and ord1/2H(τ) = 1.

In detail, we have

H(0) = lim
τ→0

H(τ) = lim
τ→∞H|

(
0 −1
1 0

)
(τ) = lim

τ→∞H

(
−1

τ

)

= lim
τ→∞

η24
(
− 1

τ/2

)
η8

(− 1
τ

)
η16

(
− 1

τ/4

) = lim
τ→∞ 16 ·

∞∏
n=1

(1− q
n
2 )24

(1− qn)8(1− q
n
4 )16

= 16.

Assume that t(τ) is the Hauptmodul on Γ1(4). Then t(τ) = H(τ)−8 = (1/h(τ/4) + 2)4−8.
The polynomial defined in Proposition 3.3 is∏

s∈{0,1/2}
(t− t(s))hs = (t− (H(0)− 8))4(t− (H(1/2)− 8)) = (t− 8)4(t+ 8) ∈ Z[t];
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this is because h0 = 4 and h1/2 = 1. Hence for τ ∈ K ∩ H, t(τ) and (1/h(τ/4) + 2)4 are
algebraic integers in a suitable number field. Therefore the result follows. �

Hereafter, to evaluate h(τ) we briefly present an algorithm by using Shimura’s reciprocity
law. For more details, one can refer to [4, 12], which explain the action of Galois group
Gal(K(N)/K) to find its class polynomial.

Let FN be the field of automorphic functions of level N whose Fourier coefficients with
respect to e2πiτ/N belong to Q(ζN ) and F = ∪∞

N=1FN . For an imaginary quadratic field K
with discriminant dK , let

θ =

{ √
dK
2 if dK ≡ 0 (mod 4),

−1+
√
dK

2 if dK ≡ 1 (mod 4).

Then we may write X2+BX +C = 0 as the primitive equation of θ with B,C ∈ Z. Define
a group

WN,θ :=

{(
t−Bs −Cs

s t

)
∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}
.

Then, over the Hilbert class field H of K there is a surjective homomorphism

WN,θ → Gal(K(N)/H)

α−1 �→ (f(θ) �→ fα(θ))

for f ∈ FN . Note that the kernel T of this homomorphism is

T :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
±
(
1 0
0 1

)
, ±

(
0 −1
1 0

)}
if K = Q(

√−1),{
±
(
1 0
0 1

)
, ±

(−1 −1
1 0

)
, ±

(
0 −1
1 1

)}
if K = Q(

√−3),{
±
(
1 0
0 1

)}
otherwise.

Let Q = [a, b, c] be a primitive positive definite quadratic form of discriminant dK and
τQ = (−b+√dK)/2a ∈ H. Then we define uQ = (up)p ∈

∏
pGL2(Zp) as follows:

• dK ≡ 0 (mod 4)

up =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
a b/2
0 1

)
if p � a,(−b/2 −c

1 0

)
if p | a and p � c,(−a− b/2 −c− b/2

1 −1
)

if p | a and p | c,

• dK ≡ 1 (mod 4)

up =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
a (−1 + b)/2
0 1

)
if p � a,(

(−1− b)/2 −c
1 0

)
if p | a and p � c,(−a+ (−1− b)/2 −c− (−1 + b)/2

1 −1
)

if p | a and p | c.
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Now we have an isomorphism between the form class group C(dK) of discriminant dK and
the Galois group Gal(H/K) defined as

C(dK) → Gal(H/K)

Q−1 �→ (f(θ) �→ fuQ(τQ))

for any f ∈ F satisfying f(θ) ∈ H. From that Gal(K(N)/K)/Gal(K(N)/H) ∼= Gal(H/K),
we have the following conclusion.

Lemma 3.4. With the notation as above, we deduce that for f ∈ FN ,

{fα·uQ(τQ) : α ∈WN,θ/T,Q ∈ C(dK)}
is the set of all conjugates of f(θ) over K.

In this situation, for f ∈ FN , the polynomial

(3.2) FN (X) :=
∏

α∈WN,θ/T
Q∈C(dK)

(X − fα·uQ(τQ)) ∈ K[X]

is the minimal polynomial of f(θ) over K. Let f(τ) = 1/h(τ/4). Assume that K is an
imaginary quadratic field with dK ≡ 0 (mod 4). Then f(θ) ∈ R since θ =

√
dK/2 and

e2πiθ/4 ∈ R. By applying f(τ) to the equation F4(X) defined in (3.2), we know that

0 = F4(f(θ)) = F4(f(θ)) = F4(f(θ)) = F 4(f(θ))

and F4(X) ∈ (K ∩R)[X] = Q[X]. Note that for τ ∈ K ∩H, f(τ) is an algebraic integer by
Theorem 1.5. Hence we may assume that F4(X) ∈ Z[X], and it makes us easy to determine
the minimal polynomial by approximation. The following is one example for finding F4(X).

Example 3.5. Let K = Q(
√−1) be an imaginary quadratic field, K(4) be the ray class

field of K modulo 4 and F4(X) be the class polynomial with F4(1/h(
√−1/4)) = 0. Then

F4(X) = X2 − 8.

Solution. For K = Q(
√−1), we have dK = −4. We can take a positive definite quadratic

form Q with discriminant −4 as Q = [1, 0, 1]. Let θ = τQ =
√−1 and up = ( 1 0

0 1 ) for a
prime p. Since θ2 + 1 = 0, let B = 0 and C = 1. Then

W4,
√−1 =

{
±
(
1 0
0 1

)
,±

(
0 −1
1 0

)
,±

(
2 3
1 2

)
,±

(
3 −2
2 −1

)}

and

W4,
√−1/T =

{[(
1 0
0 1

)]
,

[(
2 3
1 2

)]}
.

Thus, the polynomial F4(X) is

F4(X) = (X − f(i))

(
X − f

(
3 + 2i

2 + i

))
≈ X2 − 0.000000002X + 4.678495626 · 10−12 iX − 7.999999996− 1.323278393 · 10−11 i

≈ X2 − 8,

where f(τ) = 1/h(τ/4). �
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Proof of Theorem 1.6. Let r ∈ Q>0. First we explain the method for getting the value
h(rτ) if the value h(τ) is given in terms of radicals. One can use the algorithm in [17,
Algorithm 1.6]. Suppose that the value h(τ) is expressed in terms of radicals. We can write
h(rτ) in terms of radicals by using the algorithm [17, Algorithm 1.6].

Assume that K is an imaginary quadratic field with discriminant dK ≡ 0 (mod 4). Let
θ =

√
dK/2. For all τ ∈ K ∩ H, τ can be written as τ = (b + cθ)/a, where a, b, c ∈ Z

and a, c > 0. By the algorithm using the Shimura’s reciprocity law, we can find the value
h(θ/4) in terms of radicals by the minimal polynomial of the ray class field K(4) modulo
4 over K. From the modular equation F4(X,Y ) we obtain the value h(θ), and then by
Fc(X,Y ), h(cθ) = h(b + cθ) is obtained. At last, by using Fa(X,Y ), we write the value
h(τ) = h((b+ cθ)/a) in terms of radicals.

If n = 1 or n is a square free positive integer with n ≡ 3 mod 4, then the field K =
Q(
√−n) has the discriminant dK ≡ 0 (mod 4). Hence, all r

√−n ∈ K and we get the value
h(r
√−n) in terms of radicals, immediately. �

Example 3.6. We can find the value of h(τ) as follows:

(1) h(i/4) = 1/2
√
2 and h((8 +

√−1)/20) = −1/2√2,

(2) h( i2) = −1
4

(
1 +

√
2−

√
4 + 3

√
2
) (√

2− 1
)
.

Solution. (1) In Example 3.5, we can conclude that
{
h(
√−1/4), h((8 +√−1)/20)} ={±1/2√2

}
. Since

h(
√−1/4) ≈ 0.3535533904

and

h((8 +
√−1)/20) ≈ −0.3535533909 + 5.848119541 · 10−13 i,

we get that h(i/4) = 1/2
√
2 and h((8 +

√−1)/20) = −1/2√2.
(2) We use the modular equation of level 2:

F2(X,Y ) = X2 − Y (1 + 4X)(1 + 2Y ).

Since F2(h(i/4), h(i/2)) = 0, by solving the equation F2(1/2
√
2, x) = 0, we get two

zeros:

−1

4

(
1 +

√
2 +

√
4 + 3

√
2

)(√
2− 1

)
≈ −0.5473017788,

−1

4

(
1 +

√
2−

√
4 + 3

√
2

)(√
2− 1

)
≈ 0.04730177875.

By calculating that h(i/2) ≈ 0.4730177873, we get that

h

(
i

2

)
= −1

4

(
1 +

√
2−

√
4 + 3

√
2

)(√
2− 1

)
.

�
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