期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
Clean group rings over localizations of rings of integers
Article
Li, Yuanlin1,2  Zhong, Qinghai3 
[1] Brock Univ, Dept Math & Stat, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
[2] Jiangsu Univ, Fac Sci, Zhenjiang, Jiangsu, Peoples R China
[3] Karl Franzens Univ Graz, Inst Math & Sci Comp, NAWI Graz, Heinrichstr 36, A-8010 Graz, Austria
关键词: Clean ring;    Group ring;    Ring of algebraic integers;    Primitive root of unity;    Cyclotomic field;   
DOI  :  10.1016/j.jpaa.2019.106284
来源: Elsevier
PDF
【 摘 要 】

A ring R is said to be clean if each element of R can be written as the sum of a unit and an idempotent. In a recent article (J. Algebra, 405 (2014), 168-178), Immormino and McGoven characterized when the group ring Z((p))[C-n] is clean, where Z((p)) is the localization of the integers at the prime p. In this paper, we consider a more general setting. Let K be an algebraic number field, O-K be its ring of integers, and R be a localization of O-K at some prime ideal. We investigate when R[G] is clean, where G is a finite abelian group, and obtain a complete characterization for such a group ring to be clean for the case when K = Q(zeta(n)) is a cyclotomic field or K = Q(root d) is a quadratic field. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2019_106284.pdf 335KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次