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CLEAN GROUP RINGS OVER LOCALIZATIONS OF RINGS OF INTEGERS

YUANLIN LI AND QINGHAI ZHONG

Abstract. A ring R is said to be clean if each element of R can be written as the sum of a unit
and an idempotent. In a recent article (J. Algebra, 405 (2014), 168-178), Immormino and McGoven
characterized when the group ring Z(p)[Cn] is clean, where Z(p) is the localization of the integers at the

prime p. In this paper, we consider a more general setting. Let K be an algebraic number field, OK be
its ring of integers, and R be a localization of OK at some prime ideal. We investigate when R[G] is
clean, where G is a finite abelian group, and obtain a complete characterization for such a group ring

to be clean for the case when K = Q(ζn) is a cyclotomic field or K = Q(
√
d) is a quadratic field.

1. Introduction

All rings considered here are associative with identity 1 �= 0. An element of a ring R is called clean
if it is the sum of a unit and an idempotent, and a ring R is called clean if each element of R is clean.
Clean rings were introduced and related to exchange rings by Nicholson in 1977 [12] and the study of
clean rings has attracted a great deal of attention in recent 2 decades. For some fundamental properties
about clean rings as well as a nice history of clean rings we suggest the interested reader to check the
article [10].

Let G be a multiplicative group. We denote by R[G] the group ring of G over R which is the set of all
formal sums

α =
∑
g∈G

αgg ,

where αg ∈ R and the support of α, supp(α) = {g ∈ G | αg �= 0}, is finite. We let Cn denote the cyclic
group of order n. Since a homomorphic image of a clean ring is a clean ring, it follows that it is necessary
that R is clean whenever R[G] is.

In this paper, we investigate the question of when a commutative group ring R[G] over a local ring R
is clean. We also study when such a group ring is ∗-clean (see next section for the definition of ∗-clean
rings). Let Z(p) denote the localization of the ring Z of integers at the prime p. In [3], the authors
proved that Z(7)[C3] is not clean. It then follows that since Z(p) is a clean ring (as it is local) that R
being a commutative clean ring is not sufficient for R[G] to be a clean ring. In a recent paper [7], it was
shown that Z(p)[C3] is clean if and only if p �≡ 1 (mod 3). More generally, the authors gave a complete
characterization of when Z(p)[Cn] is clean. Note that Z(p) is a local ring between Z and Q. In this paper,

we consider a more general setting. Let (R,m) be a commutative local ring and we denote R = R/m. Let
K be an algebraic number field, OK be its ring of integers, and R be a localization of OK at some prime
ideal p. We investigate when R[G] is clean, where G is a finite abelian group, and provide a complete
characterization for such a group ring to be clean for the case when K = Q(ζn) is a cyclotomic field or

K = Q(
√
d) is a quadratic field. Our main results are as follows.
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Theorem 1.1. Let K = Q(ζn) be a cyclotomic field for some n ∈ N, O = Z[ζn] its rings of integers,
p ⊂ O a nonzero prime ideal, and G a finite abelian group. Let p be the prime with pZ = p ∩ Z, let n0

be the maximal positive divisor of n with p � n0, let n1 be the maximal divisor of exp(G) with p � n1 and

gcd(n1, n0) = 1, and let m′ be the maximal divisor of lcm(exp(G),n0)
n0n1

with p � m′.
Then the group ring Op[G] is clean if and only if ordn1 p = ϕ(n1), ordn0m′ p = m′ ordn0 p, and

gcd(ordn1 p, ordn0m′ p) = 1. In particular, if exp(G) is a divisor of n, then Op[G] is clean.

Note that if n = 1 (i.e. K = Q), then n0 = 1 and m′ = 1. Therefore Theorem 1.1 implies the following
corollary which is exactly the main result of [7, Theorem 3.3].

Corollary 1.2. Let G be a finite abelian group, let p be a prime number, and let n1 be the maximal
divisor of exp(G) with p � n1. Then Z(p)[G] is clean if and only if ordn1 p = ϕ(n1)(i.e. p is a primitive
root of n1).

Theorem 1.3. Let K = Q(
√
d) be a quadratic field for some non-zero square-free integer d �= 1, O its

rings of integers, p ⊂ O a nonzero prime ideal, and G a finite abelian group. Let p be the prime with
pZ = p ∩ Z, let Δ be the discriminant of K, and let n be the maximal positive divisor of exp(G) with
p � n.

1. If Δ � n, then Op[G] is clean if and only if one of the following holds
(a) p = 2 is a primitive root of unity of n and Δ �≡ 5 (mod 8);
(b) p �= 2 is a primitive root of unity of n and

(
Δ
p

)
= 1 or 0;

(c) n = 2, p �= 2, and
(
Δ
p

)
= −1, where

(
Δ
p

)
is the Legendre symbol.

2. If Δ |n and d ≡ 2, 3 (mod 4), then Op[G] is clean if and only if |d| is a prime, n = 4|d|� with

� ∈ N, p ≡ 3 (mod 4),
(
Δ
p

)
= 1, and ordn p = ϕ(n)/2.

3. If Δ |n and d ≡ 1 (mod 4), then Op[G] is clean if and only if one of the following holds

(a) |d| is a prime, n = |d|� or 2|d|� for some � ∈ N, and either ordn p = 2ϕ(n)

3+
(

d
p

) , or ordn p = ϕ(n)/2

with
(
d
p

)
= −1 and d < 0, where

(
d
p

)
is the Legendre symbol.

(b) |d| = q is a prime, n = 4q� with q ≡ 3 (mod 4) and � ∈ N,
(
d
p

)
= 1, p ≡ 3 (mod 4), and

ordq� p = q�−1(q − 1)/2.

(c) |d| = q1 is a prime, n = q�11 q�22 or 2q�11 q�22 with q1 ≡ 3 (mod 4), �1, �2 ∈ N, and q2 is another

odd prime,
(
d
p

)
= 1, p is a primitive root of unity of q�22 , ord

q
�1
1
p = q�1−1

1 (q1 − 1)/2, and

gcd(q�1−1
1 (q1 − 1)/2, q�2−1

2 (q2 − 1)) = 1.

(d) |d| = q1q2 is a product of two distinct primes, n = q�11 q�22 or 2q�11 q�22 with �1, �2 ∈ N,
(
d
p

)
= 1,

p is a primitive root of unity of q�11 and q�22 , and gcd(q�1−1
1 (q1 − 1)/2, q�2−1

2 (q2 − 1)/2) = 1.

In Section 2, we collect some necessary knowledge of the structure of the group of units (Z/mZ)× and
field extension. Furthermore, we give some general characterization theorems for clean and ∗-clean group
rings. In Section 3, we deal with group rings over local subrings of cyclotomic fields and provide a proof
of Theorem 1.1. In Section 4, we consider group rings over local subrings of quadratic fields and give a
proof of Theorem 1.3.

2. Preliminaries

For a finite abelian group G, we denote by exp(G) the exponent of G. We denote by N the set of all
positive integers and N0 = N ∪ {0}. For n ∈ N, we denote by ϕ(n) the Euler function. Let n ∈ N and

let n = pk1
1 . . . pks

s be its prime factorization, where s, k1, . . . , ks ∈ N and p1, . . . , ps are pair-wise distinct



CLEAN GROUP RINGS OVER LOCALIZATIONS OF RINGS OF INTEGERS 3

primes. It is well-known that

ϕ(n) =

s∏
i=1

ϕ(pki
i ) =

s∏
i=1

pki−1
i (pi − 1)

and (Z/nZ)× ∼= (Z/pk1
1 Z)× × . . .×(Z/pks

s Z)× .

Furthermore,

(Z/pki Z)
× ∼= Cpk−1

i (pi−1) where pi ≥ 3,

(Z/2�Z)× = 〈−1〉 × 〈5〉 ∼= C2 ⊕ C2�−2 where � ≥ 3,

and (Z/4Z)× ∼= C2 .

For every m ∈ N with gcd(m,n) = 1, we denote by ordn m = ord(Z/nZ)× m the multiplicative order
of m modulo n. If ordn m = ϕ(n), we say m is a primitive root of n and n has a primitive root if and
only if n = 2, 4, q�, or 2q�, where q is an odd prime and � ∈ N. Let n1 ∈ N be another integer with
gcd(n1,m) = 1. Then

ordn m ≤ ordnn1 m ≤ n1 ordn m,

and lcm(ordn m, ordn1 m) = ordlcm(n,n1) m.

Let ζn be an nth primitive root of unity over Q. Then [Q(ζn) : Q] = ϕ(n). Let m be another positive
integer. Then

Q(ζn) ∩Q(ζm) = Q(ζgcd(n,m))

and Q(ζn)(ζm) = Q(ζlcm(n,m)) .

Let (R,m) be a commutative local ring and we denote R = R/m. Then R is a field and we denote
by charR the characteristic of R. For any polynomial f(x) = anx

n + . . . + a0 ∈ R[x], we denote

f(x) = anx
n + . . .+ a0 ∈ R[x], where ai = ai +m for all i ∈ {0, . . . , n}.

Let R be a ring R and let G be a multiplicative group. Then the group ring of G over R is the ring
R[G] of all formal sums

α =
∑
g∈G

αgg ,

where αg ∈ R and the support of α, supp(α) = {g ∈ G | αg �= 0}, is finite. Addition is defined
componentwise and multiplication is defined by the following way: for α, β ∈ R[G],

αβ =

⎛
⎝∑

g∈G

αgg

⎞
⎠(∑

h∈G

βhh

)
=

∑
g,h∈G

αgβh(gh) .

For more information on the group ring, we refer [11] as a reference.

Theorem 2.1. Let (R,m) be a commutative noetherian local ring with charR = p ≥ 0, let G be a finite
abelian group, and let n be the maximal divisor of exp(G) with p � n. Then R[G] is clean if and only if
each monic factor of xn − 1 in R[x] can be lifted to a monic factor of xn − 1 in R[x].

Proof. This follows from [7, Proposition 2.1] and [14, Theorem 5.8]. �

Let K be an algebraic number field, O its rings of integers, and p ⊂ O a nonzero prime ideal. Then
there exists a prime p such that p ∩ Z = pZ and the localization Op is a discrete valuation ring, which

implies that Op[x] is a UFD (Unique factorization domain). Furthermore, the norm N(p) = |O/p| = |Op|
is a prime power of p.

Let Fq be a finite field, where q is a power of some prime p and let ζn be the nth primitive root of

unity over Fp with gcd(n, q) = 1. Then [Fq(ζn) : Fq] = ordn q. Let F be an arbitrary field and let f(x) be
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a polynomial of F [x]. If α is a root of f(x), then [F (α) : F ] = deg(f(x)) if and only if f(x) is irreducible
in F [x].

Theorem 2.2. Let K be an algebraic number field, O its rings of integers, p ⊂ O a nonzero prime ideal,
and G a finite abelian group. Then the group ring Op[G] is clean if and only if [K[ζm] : K] = ordm(N(p))
for every positive divisor m of exp(G) with p � m, where ζm is an mth primitive root of unity over Q.

Proof. Let n be the maximal divisor of exp(G) with p � exp(G). Since Op[x] is a UFD, we suppose that
xn − 1 = f1(x) · . . . · fs(x) , where s ∈ N and f1(x), . . . , fs(x) are monic irreducible polynomials in Op[x].
Then the Generalized Gauss’ Primitive Polynomial Lemma implies that f1(x), . . . , fs(x) are also monic
irreducible polynomials in K[x]. For every positive divisor m of n, let Φm(x) be the mth cyclotomic
polynomial. Then Φm(x) ∈ Z[x] ⊂ Op[x] and

xn − 1 =
∏

1<m |n
Φm(x) = f1(x) · . . . · fs(x) .

1. Suppose Op[G] is clean. Let f(x) be a monic irreducible factor of xn − 1 in Op[x] and let h(x)

be a monic irreducible factor of f(x) in Op[x]. By Theorem 2.1, there exists a monic irreducible factor

h(x) of xn − 1 in Op[x] such that h(x) = h(x). If h(x) �= f(x), it follows by Op[x] is a UFD that

f(x)h(x) is a monic factor of xn − 1 in Op[x] and hence h(x)
2
is a monic factor of xn − 1 in Op[x]. Since

gcd(n, p) = 1, we obtain xn − 1 ∈ Op[x] has no multiple root in any extension of Op, a contradiction.

Therefore h(x) = f(x) and hence f(x) = h(x) = h(x) is irreducible in Op[x].
Let m be a positive divisor of n. It follows from the fact that Op[x] is a UFD that there exists i ∈ [1, s]

such that fi(x) divides Φm(x) in Op[x]. Thus every root of fi(x) is a mth primitive root of unity in K

and hence [K(ζm) : K] = deg(fi(x)) = deg(fi(x)). Since fi(x) is irreducible in Op[x] and every root of

fi(x) is a mth primitive root of unity in Op, we have deg(fi(x)) = [Op(ζm) : Op] = ordm N(p), where ζm
is a mth primitive root of unity over Fp. Therefore [K(ζm) : K] = ordm N(p).

2. Conversely, suppose [K(ζm) : K] = ordm N(p) for every divisor m of n. Let i ∈ [1, s]. Then fi(x)
is a factor of some mth cyclotomic polynomial Φm(x) with m |n. Since fi(x) is irreducible in K[x], we
have deg(fi(x)) = [K(ζm) : K] and hence

deg(fi(x)) = deg(fi(x)) = [K(ζm) : K] = ordm N(p) = |Op(ζm) : Op| .
Therefore fi(x) is irreducible in Op[x] and

xn − 1 = f1(x) · . . . · fs(x) ∈ Op[x] .

Let h(x) be a monic factor of xn − 1 ∈ Op[x]. Since Op[x] is a UFD, there exists a subset I ⊂ [1, s] such

that h(x) =
∏

i∈I fi(x) and hence
∏

i∈I fi(x) = h(x). Therefore every monoic factor of xn − 1 ∈ Op[x]
can be lifted to a monioc factor of xn − 1 ∈ Op[x]. It follows from Theorem 2.1 that Op[G] is clean. �

A ring R is called a ∗-ring if there exists an operation ∗ : R → R such that (x + y)∗ = x∗ + y∗,
(xy)∗ = x∗y∗, and (x∗)∗ = x for all x, y ∈ R. An element p ∈ R is said to be a projection if p∗ = p = p2

and a ∗-ring R is said to be a ∗-clean ring if every element of R is the sum of a unit and a projection. A
commutative ∗-ring is ∗-clean if and only if it is clean and every idempotent is a projection ([8, Theorem
2.2]). Let G be an abelian group. With the classical involution

∗ : R[G] → R[G], given by

(
∑

agg)
∗ =

∑
agg

−1 ,

the group ring R[G] is a ∗-ring. The question of when a group ring R[G] is ∗-clean has been recently
studied by several authors and many interesting results were obtained (see, for examples, [2, 4, 5, 6, 8, 9],
for some recent developments). Next we provide a characterization for Op[G] to be ∗-clean.
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Theorem 2.3. Let K be an algebraic number field, O its rings of integers, p ⊂ O a nonzero prime ideal
with pZ = p ∩ Z, and G a finite abelian group with p � exp(G). If the group ring Op[G] is clean, then
Op[G] is ∗-clean if and only if K[G] is ∗-clean.
Proof. Let Op[G] be clean. Suppose K[G] is ∗-clean. Since every idempotent of Op[G] is an idempotent
of K[G], thus every idempotent of Op[G] is a projective. It follows that Op[G] is ∗-clean.

Suppose Op[G] is ∗-clean. Let OK(ζexp(G))/Q be the ring of integers of K(ζexp(G)) and let I be a prime

ideal of OK(ζexp(G))/Q with I ∩ O = p. By [4, The beginning of Section 5] and p � exp(G), there is a

complete family of orthogonal idempotents of K(ζexp(G))[G] which lies in (OK(ζexp(G))/Q)I [G]. It follows

from [4, Lemma 4.3] that every idempotent of K[G] lies in (OK(ζexp(G))/Q)I [G] ∩ K[G] = Op[G]. Since

every idempotent of Op[G] is a projection, we obtain every idempotent of K[G] is a projection. Note that
K[G] is clean. Thus K[G] is ∗-clean. �

3. Group rings over local subrings of cyclotomic fields

In this section, we investigate when a group ring over a local subring of a cyclotomic field is clean and
provide a proof for our main theorem 1.1. We also characterize when such a group ring is ∗-clean. We
start with the following lemma which we will use without further mention.

Lemma 3.1. Let K = Q(ζn) be a cyclotomic field for some n ∈ N, O = Z[ζn] its rings of integers, and
p ⊂ O a nonzero prime ideal with p ∩ Z = pZ for some prime p. Suppose n = pun0 with p � n0. Then
N(p) = pordn0

p.

Proof. This follows by [1, VI.1.12 and VI.1.15]. �

Proof of Theorem 1.1. Let n2 be the maximal divisor of exp(G) such that p � n2 and let n3 = n2

n1
.

Since

m′ =
lcm(n2, n0)

n0n1
=

lcm(n3, n0)

n0
,

we have lcm(n3, n0) = n0m
′ and lcm(n2, n0) = n0m

′n1.
Let m be a divisor of n2. Then

[Q(ζn)(ζm) : Q(ζn)] = [Q(ζlcm(n,m) : Q(ζn)] =
ϕ(lcm(n,m))

ϕ(n)
=

ϕ(lcm(n0,m))

ϕ(n0)

and

ordm N(p) = ordm pordn0
p =

ordm p

gcd(ordm p, ordn0 p)
=

lcm(ordn0 p, ordm p)

ordn0 p
=

ordlcm(n0,m) p

ordn0 p
.

Therefore by Theorem 2.2 that R[G] is clean if and only if

for every divisor m of n2, we have
ϕ(lcm(n0,m))

ϕ(n0)
=

ordlcm(n0,m) p

ordn0 p
.

1. We first suppose that R[G] is clean. Since n1, n3 and n2 are divisors of n2, we obtain

ϕ(lcm(n0, n1))

ϕ(n0)
=

ordlcm(n0,n1) p

ordn0 p
,

ϕ(lcm(n0, n3))

ϕ(n0)
=

ordlcm(n0,n3) p

ordn0 p
,

and
ϕ(lcm(n0, n2))

ϕ(n0)
=

ordlcm(n0,n2) p

ordn0 p
.
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Since gcd(n1, n0) = 1, we obtain

ϕ(n1) =
ϕ(lcm(n0, n1))

ϕ(n0)
=

ordlcm(n0,n1) p

ordn0 p
=

lcm(ordn0 p, ordn1 p)

ordn0 p
≤ ordn1 p ordn0 p

ordn0 p
= ordn1 p ≤ ϕ(n1) .

Then ordn1 p = ϕ(n1).
Since

m′ =
ϕ(n0m

′)
ϕ(n0)

=
ϕ(lcm(n0, n3))

ϕ(n0)
=

ordlcm(n0,n3) p

ordn0 p
=

ordn0m′ p

ordn0 p
≤ m′ ordn0 p

ordn0 p
= m′ ,

we obtain ordn0m′ p = m′ ordn0 p.
Since

m′ϕ(n1) =
ϕ(n0m

′n1)

ϕ(n0)
=

ϕ(lcm(n0, n2))

ϕ(n0)
=

ordlcm(n0,n2) p

ordn0 p
=

ordn0m′n1 p

ordn0 p

=
lcm(ordn0m′ p, ordn1

p)

ordn0 p
≤ ordn0m′ p ordn1

p

ordn0 p
=

m′ ordn0
pϕ(n1)

ordn0 p
= m′ϕ(n1) ,

we obtain lcm(ordn0m′ p, ordn1 p) = ordn0m′ p ordn1 p. Thus gcd(ordn0m′ p, ordn1 p) = 1.

2. Conversely, suppose that ordn1 p = ϕ(n1), ordn0m′ p = m′ ordn0 p, and gcd(ordn1 p, ordn0m′ p) = 1.

Then for every m |n2, we let m1 = gcd(m,n1) and m2 = lcm(m/m1,n0)
n0

. Then ordm1 p = ϕ(m1). It follows

by n0m2 |n0m
′ that gcd(ordm1 p, ordn0m2 p) = 1 and

ordn0m′ p = ordn0m2
m′
m2

p ≤ m′

m2
ordn0m2 p ≤ m′

m2
m2 ordn0 p = m′ ordn0 p = ordn0m′ p .

Thus ordn0m2 p = m2 ordn0 p. It follows that

ordlcm(n0,m) p

ordn0 p
=

ordm1n0m2
p

ordn0 p
=

lcm(ordm1
p, ordn0m2

p)

ordn0 p

=
ordm1 p ordn0m2 p

ordn0 p
=

m2 ordm1 p ordn0 p

ordn0 p

= m2 ordm1 p = m2ϕ(m1)

=
ϕ(m1n0m2)

ϕ(n0)
=

ϕ(lcm(n0,m))

ϕ(n0)
.

Therefore R[G] is clean.

3. In particular, if exp(G) is a divisor of n, then n1 = m′ = 1 and hence Op[G] is clean. �
Next we characterize when a group ring of a finite abelian group over a local ring Op is ∗-clean. We

need the following two propositions.

Proposition 3.2. Let m,n ∈ N. Then Q(ζm + ζ−1
m )(ζn) = Q(ζm)(ζn) if and only if gcd(m,n) ≥ 3 or

m ≤ 2.

Proof. If m ≤ 2, then it is obvious that Q(ζm + ζ−1
m )(ζn) = Q(ζm)(ζn). We suppose m ≥ 3.

Let K = Q(ζm + ζ−1
m ). Then K ⊂ K(ζn) ⊂ Q(ζm)(ζn) = Q(ζlcm(n,m)). Thus K(ζn) = Q(ζm)(ζn) if

and only if [K(ζn) : K] = [Q(ζlcm(n,m)) : K].

Since [Q(ζlcm(n,m)) : K] =
[Q(ζlcm(n,m)):Q]

[K:Q] = 2ϕ(lcm(m,n))
ϕ(m) = 2ϕ(n)

ϕ(gcd(m,n)) and

[K(ζn) : K] = [Q(ζn) : K ∩Q(ζn)] = [Q(ζn) : Q(ζgcd(m,n))][Q(ζgcd(m,n)) : K ∩Q(ζn)]

=
ϕ(n)

ϕ(gcd(m,n))
[Q(ζgcd(m,n)) : K ∩Q(ζgcd(m,n))]

=
ϕ(n)

ϕ(gcd(m,n))
[K(ζgcd(m,n)) : K] ,
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we obtain |K(ζgcd(m,n)) : K| ≤ 2. Moreover, K(ζn) = Q(ζm)(ζn) if and only if |K(ζgcd(m,n)) : K| = 2 if
and only if ζgcd(m,n) �∈ K.

If gcd(m,n) ≥ 3, then ζgcd(m,n) �∈ R and hence ζgcd(m,n) �∈ K ⊂ R. It follows that K(ζn) = Q(ζm)(ζn).
If gcd(m,n) ≤ 2, then ζgcd(m,n) ∈ Q ⊂ K and hence K(ζn) �= Q(ζm)(ζn). �

Proposition 3.3. Let G be a finite abelian group and let n ∈ N. Then Q(ζn)[G] is ∗-clean if and only if
exp(G) ≥ 3 and gcd(exp(G), n) ≤ 2.

Proof. This follows from [4, Theorem 1.2] and Proposition 3.2. �

Theorem 3.4. Let K = Q(ζn) be a cyclotomic field for some n ∈ N, O = Z[ζn] its rings of integers,
p ⊂ O a nonzero prime ideal with pZ = p ∩ Z, where p is a prime, and G a finite abelian group with
p � exp(G). let n0 be the maximal divisor of n with p � n0 and let n1 be the maximal divisor of exp(G) with
gcd(n1, n0) = 1. Then the group ring Op[G] is ∗-clean if and only if ordn1 p = ϕ(n1), 3 ≤ exp(G) ≤ 2n1,
and gcd(ordn1 p, ordn0 p) = 1.

Proof. 1. Suppose ordn1 p = ϕ(n1), 3 ≤ exp(G) ≤ 2n1, and gcd(ϕ(n1), ordn0 p) = 1. Since every prime
divisor of exp(G)/n1 is a divisor of n0, it follows from exp(G)/n1 ≤ 2 that (exp(G)/n1) divides n0. Hence

lcm(exp(G), n0)

n0n1
=

lcm(exp(G)/n1, n0)

n0
= 1 .

Thus by Theorem 1.1 Op[G] is clean. Since p � exp(G), we have gcd(n, exp(G)) = gcd(n0, exp(G)/n1) ≤ 2.
Thus it follows from Proposition 3.3 that Q(ζn)[G] is ∗-clean and hence by Theorem 2.3 Op[G] is ∗-clean.

2. Suppose Op[G] is ∗-clean. Let m′ = lcm(exp(G),n0)
n0n1

. Since Op[G] is clean, it follows from Theorem
1.1 that

ordn1 p = ϕ(n1), ordn0m′ p = m′ ordn0 p, and gcd(ϕ(n1),m
′ ordn0 p) = 1 .

By Theorem 2.3 and Proposition 3.3, we have exp(G) ≥ 3 and gcd(n, exp(G)) ≤ 2. Thus gcd(n0, exp(G)/n1) ≤
2. Since every prime divisor of exp(G)/n1 is a divisor of n0, we obtain

exp(G) = 2�n1 for some � ∈ N0 .

If � ≥ 2, then n0 = 2n′
0 with n′

0 is odd which implies that m′ = 2�−1. Thus

2�−1 ordn0 p = m′ ordn0 p = ordm′n0 p = lcm(ord2� p, ordn′
0
p) ≤ 2�−2 ordn′

0
p = 2�−2 ordn0 p ,

a contradiction. Thus exp(G) ≤ 2n1 and m′ = 1. The assertion follows. �

Next, we provide some (∗-clean or non ∗-clean) clean group rings in each case of the characterizations
of Theorems 1.1 and 3.4.

Example 3.5. Let K = Q(ζn) be a cyclotomic field for some n ∈ N, O = Z[ζn] its rings of integers, and
G a finite abelian group with exp(G) ≥ 3.

1. If p is a primitive root of unity of exp(G), then Z(p)[G] is ∗-clean.
2. Suppose gcd(exp(G), n) = 1 and exp(G) has a primitive root. If there is a prime divisor q of ϕ(n)

such that q � ϕ(exp(G)), then there exists x, y ∈ N with gcd(x, n) = 1 and gcd(y, exp(G)) = 1 such
that ordn x = q and ordexp(G) y = ϕ(exp(G)). By Chinese Remainder Theory, there exists z ∈ N
with gcd(z, n exp(G)) = 1 such that ordn z = q and ordexp(G) z = ϕ(exp(G)). By Dirichlet’s prime
number theorem, there is a prime p such that p ≡ z (mod n exp(G)). Let p ⊂ O be a prime ideal
such that p ∩ Z = pZ. Then by Theorem 3.4 Op[G] is ∗-clean.

3. Suppose gcd(exp(G), n) ≥ 3, gcd
( exp(G)
gcd(exp(G),n) , n

)
= 1, and exp(G)

gcd(exp(G),n) has a primitive root. If

there is a prime divisor q of ϕ(n) such that q � ϕ
( exp(G)
gcd(exp(G),n)

)
, then there exists a prime p such

that gcd(ordn p, ord exp(G)
gcd(exp(G),n)

p) = 1. Let p ⊂ O be a prime ideal such that p ∩ Z = pZ. Then by

Theorems 1.1 and 3.4, Op[G] is clean but not ∗-clean.
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4. Let n = 7, exp(G) = 49 × 3, and let p ⊂ O be a prime ideal such that p ∩ Z = 23Z. Since
ord7 23 = 3, ord3 23 = 2 = ϕ(3), and ord49 23 = 21 = 7 ord7 23, it follows from Theorems 1.1 and
3.4 Op[G] is clean but not ∗-clean.

4. Group rings over local subrings of quadratic fields

In this section, we investigate when a group ring over a local subring of a quadratic field is clean. Let
d be a non-zero square-free integer with d �= 1, K = Q(

√
d) a quadratic number field,

ω =

⎧⎪⎨
⎪⎩
√
d if d ≡ 2, 3 (mod 4) ,

1 +
√
d

2
if d ≡ 1 (mod 4) ,

and Δ =

{
4d if d ≡ 2, 3 (mod 4) ,

d if d ≡ 1 (mod 4) .

Then OK = Z[ω] is the ring of integers and Δ is the discriminant of K.

For an odd prime p and an integer a, we denote by
(

a
p

)
∈ {−1, 0, 1} the Legendre symbol of a modulo

p.
We first provide two useful lemmas.

Lemma 4.1. Let d �= 1 be a non-zero square-free integer and let Δ be the discriminant of Q(
√
d). Then

Q(
√
d) ⊂ Q(ζn) if and only if n is a multiple of Δ.

Proof. This follows from [13, Corollary 4.5.5] �
Lemma 4.2. Let d �= 1 be a non-zero square-free integer and let I be a prime ideal of OK , where
K = Q(

√
d). Suppose Δ is the discriminant of K and charOK/I = p, where p is a prime.

1. If p = 2, then N(I) = p if and only if Δ �≡ 5 (mod 8).
2. If p is odd, then N(I) = p if and only if

(
Δ
p

)
= 1 or 0.

Proof. This follows by [1, Theorem 22, III.2.1, and V.1.1]. �
Proof of Theorem 1.3. Let R = Op. By Theorem 2.2, we have R[G] = Op[G] is clean if and only if

[Q(ζm) : Q(ζm) ∩Q(
√
d)] = ordm(N(p)) for every divisor m of n.

1. Since Δ � n, it follows by Lemma 4.1 that Q(
√
d) ∩Q(ζm) = Q for every positive divisor m of n.

1.1. Suppose the item 1.(a) or 1.(b) holds. By Lemma 4.2 we have N(p) = p. Therefore for every
divisor m of n, we obtain that p is a primitive root of unity of m and hence

[Q(ζm) : Q(ζm) ∩Q(
√
d)] = [Q(ζm) : Q] = ϕ(m) = ordm p = ordm(N(p)) .

Thus R[G] is clean.
Suppose the item 1.(c) holds. By Lemma 4.2 we have N(p) = p2. Thus

[Q(ζ2) : Q(ζ2) ∩Q(
√
d)] = [Q(ζ2) : Q] = ϕ(2) = ord2 p

2 = ord2(N(p)) ,

whence R[G] is clean.

1.2. Conversely, suppose R[G] is clean. Then [Q(ζn) : Q(ζn) ∩ Q(
√
d)] = [Q(ζn) : Q] = ordn(N(p))

implies that ϕ(n) = ordn(N(p)). Thus either N(p) = p is a primitive root of unity of n, or N(p) = p2

and ordn p = ϕ(n) is odd, i.e., n ≤ 2. The assertions follow by Lemma 4.2.

2.1. Suppose that R[G] is clean. Since Δ = 4d � 4, we have [Q(ζ4) : Q(ζ4) ∩ Q(
√
d)] = [Q(ζ4) :

Q] = ord4(N(p)). Thus ϕ(4) = ord4(N(p)) and hence N(p) = p ≡ 3 (mod 4). If p | d, then p | n, a
contradiction. Thus p � d and hence by Lemma 4.2.2

(
Δ
p

)
= 1.

Since [Q(ζn) : Q(ζn)∩Q(
√
d)] = [Q(ζn) : Q(

√
d)] = ordn(N(p)), we obtain that ϕ(n)/2 = ordn(N(p)) =

ordn p. Since 4 | n, we may assume that n = 2�n′ with � ≥ 2 and n′ is odd. Thus (Z/nZ)× ∼=
(Z/2�Z)× × (Z/n′Z)×. Since (Z/nZ)× has an element of order ϕ(n)/2, we obtain that n′ = 1 if � ≥ 3
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and n′ is a prime power if � = 2. Thus n = 4q� and d | q�, where q is a prime. Note that d is square-free.
Therefore |d| = q is a prime.

2.2. Conversely,
(
Δ
p

)
= 1 implies that N(p) = p. Suppose |d| = 2 and n = 2� with � ≥ 3. Let m be

a positive divisor of n. If m = 4, then |Q(ζ4) : Q(ζ4) ∩ Q(
√
d)| = 2 and ord4 p = 2 by p ≡ 3 (mod 4).

Thus [Q(ζ4) : Q(ζ4) ∩ Q(
√
d)] = ord4 p. If m = 2t with t ≥ 3, then [Q(ζm) : Q(ζm) ∩ Q(

√
d)] = 2t−2

and ordm p = m/4 = 2t−2 by 2�−2 = ϕ(n)/2 = ordn p. Thus [Q(ζm) : Q(ζm) ∩ Q(
√
d)] = ordm(N(p)).

Putting all these together, we obtain that R[G] is clean.
Suppose |d| ≥ 3 is a prime and n = 4|d|�. Letm be a positive divisor of n. Ifm = |d|t for some 1 ≤ t ≤ �,

then 4d � m and hence [Q(ζm) : Q(ζm) ∩Q(
√
d)] = ϕ(m) = |d|t−1(|d| − 1). Since p is a primitive root of

unity of |d|�, we obtain ϕ(m) = ordm p. Therefore [Q(ζm) : Q(ζm) ∩Q(
√
d)] = ordm(N(p)). If m = 2|d|t

for some 1 ≤ t ≤ �, then 4d � m and hence [Q(ζm) : Q(ζm) ∩ Q(
√
d)] = ϕ(m) = |d|t−1(|d| − 1). Since

p is a primitive root of unity of |d|�, we obtain ϕ(m) = ordm p. Therefore [Q(ζm) : Q(ζm) ∩ Q(
√
d)] =

ordm(N(p)). If m = 4|d|t for some 1 ≤ t ≤ �, then 4d | m and hence [Q(ζm) : Q(ζm) ∩ Q(
√
d)] =

ϕ(m)/2 = |d|t−1(|d|− 1). Since p is a primitive root of unity of |d|�, we obtain ϕ(m) = ordm p. Therefore

[Q(ζm) : Q(ζm) ∩ Q(
√
d)] = ordm(N(p)). If m = 4, then [Q(ζ4) : Q(ζ4) ∩ Q(

√
2)] = 2 and ord4 p = 2 as

p ≡ 3 (mod 4). Thus [Q(ζ4) : Q(ζ4) ∩Q(
√
2)] = ord4 p. Putting all these together, we obtain that R[G]

is clean.

3. If p | d, then p | n, a contradiction. Therefore
(
d
p

)
= 1 or −1.

3.1. Let R[G] be clean. Suppose |d| is a prime and n = |d|� or n = 2|d|� for some � ∈ N. If
(
d
p

)
= −1,

then N(p) = p2 and hence [Q(ζ(n)) : Q(ζ(n)) ∩ Q(
√
d)] = ordn p

2 implies either ϕ(n) = ordn p or

ordn p = ϕ(n)/2 is odd. If
(
d
p

)
= 1, thenN(p) = p and hence [Q(ζ(n)) : Q(ζ(n))∩Q(

√
d)] = ordn p implies

that ϕ(n)/2 = ordn p. Putting all these together, we have either ordn p = 2ϕ(n)

3+
(

d
p

) , or ordn p = ϕ(n)/2 is

odd with
(
d
p

)
= −1. Note that ϕ(n)/2 is odd if and only if |d| ≡ 3 (mod 4), i.e., d < 0. Therefore (a)

holds.
Otherwise, there exists an m | n with m ≥ 3 such that d � m. Therefore [Q(ζm) : Q(ζm) ∩ Q(

√
d)] =

ϕ(m) = ordm(N(p)). Since ϕ(m) must be even, we obtain that N(p) = p and hence
(
d
p

)
= 1. Since d |n,

we have ϕ(n)/2 = ordn p. Therefore (Z/nZ)× ∼= Cϕ(n) or C2 ⊕ Cϕ(n)/2, which implies that n = q�11 q�22
or 2q�11 q�22 or 4q�11 , where q1, q2 are distinct odd primes with q1 | d, �1 ∈ N and �2 ∈ N0. Note that d

is square-free. Then either |d| = q1 and n ∈ {q�11 q�22 , 2q�11 q�22 , 4q�11 } with �1, �2 ∈ N, or |d| = q1q2 and

n ∈ {q�11 q�22 , 2q�11 q�22 } with �1, �2 ∈ N.

Suppose |d| = q1. If n = q�11 q�22 or 2q�11 q�22 , then [Q(ζ
q
�1
1
) : Q(ζ

q
�1
1
) ∩Q(

√
d)] = ϕ(q�11 )/2 = ord

q
�1
1
p and

[Q(ζ
q
�2
1
) : Q(ζ

q
�2
2
) ∩Q(

√
d)] = ϕ(q�22 ) = ord

q
�2
2
p. Since

[Q(ζ
q
�1
1 q

�2
2
) : Q(ζ

q
�1
1 q

�2
2
) ∩Q(

√
d)] = ϕ(q�11 q�22 )/2 = ord

q
�1
1 q

�2
2
(p)

= lcm(ord
q
�1
1
p, ord

q
�2
2
p) =

ord
q
�1
1
p ord

q
�2
2
p

gcd(ord
q
�1
1
p, ord

q
�2
2
p)

=
ϕ(q�11 )/2 · ϕ(q�22 )

gcd(ϕ(q�11 )/2, ϕ(q�22 ))

=
ϕ(q�11 q�22 )/2

gcd(q�1−1
1 (q1 − 1)/2, q�2−1

2 (q2 − 1))
,

we have gcd(q�1−1
1 (q1 − 1)/2, q�2−1

2 (q2 − 1)) = 1 which implies that d = −q1 ≡ 1 (mod 4). Therefore

(c) holds. If n = 4q�11 , then p �= 2 and [Q(ζ
q
�1
1
) : Q(ζ

q
�1
1
) ∩ Q(

√
d)] = ϕ(q�11 )/2 = ord

q
�1
1
p, [Q(ζ4) :
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Q(ζ4) ∩Q(
√
d)] = ϕ(4) = ord4 p which implies that p ≡ 3 (mod 4). Since

[Q(ζ
4q

�1
1
) : Q(ζ

4q
�1
1
) ∩Q(

√
d)] = ϕ(4q�11 )/2 = ord

4q
�1
1
(p)

= lcm(ord4 p, ordq�11
p) =

2 ord
q
�1
1
p

gcd(2, ord
q
�1
1
p)

=
ϕ(4q�11 )/2

gcd(2, q�1−1
1 (q1 − 1)/2)

,

we have gcd(2, q�1−1
1 (q1 − 1)/2) = 1, whence q1 ≡ 3 (mod 4). Therefore (b) holds.

Suppose |d| = q1q2. Then [Q(ζ
q
�1
1
) : Q(ζ

q
�1
1
) ∩ Q(

√
d)] = ϕ(q�11 ) = ord

q
�1
1
(p) and [Q(ζ

q
�2
2
) : Q(ζ

q
�2
2
) ∩

Q(
√
d)] = ϕ(q�22 ) = ord

q
�2
2
(p), whence p is a primitive root of unity of both q�11 and q�22 . Since

[Q(ζ
q
�1
1 q

�2
2
) : Q(ζ

q
�1
1 q

�2
2
) ∩Q(

√
d)] = ϕ(q�11 q�22 )/2 = ord

q
�1
1 q

�2
2
(p)

= lcm(ord
q
�1
1
p, ord

q
�2
2
p) =

ord
q
�1
1
p ord

q
�2
2
p

gcd(ord
q
�1
1
p, ord

q
�2
2
p)

=
ϕ(q�11 )ϕ(q�22 )

gcd(ϕ(q�11 ), ϕ(q�22 ))

=
ϕ(q�11 q�22 )

gcd(q�1−1
1 (q1 − 1), q�2−1

2 (q2 − 1))
,

we have gcd(q�1−1
1 (q1 − 1)/2, q�2−1

2 (q2 − 1)/2) = 1. Therefore (d) holds.

3.2. Conversely, suppose that (a) holds. Let m be a positive divisor of n with m ≥ 3. Then d | m.

If
(
d
p

)
= 1, then N(p) = p and hence [Q(ζm) : Q(ζm) ∩ Q(

√
d)] = ϕ(m)/2 = ordm p = ordm(N(p)),

implying that R[G] is clean. If
(
d
p

)
= −1 and either ordn p = ϕ(n) or ordn p = ϕ(n)/2 with |d| = −d ≡ 3

(mod 4), then N(p) = p2, ordn p
2 = ϕ(n)/2, and hence [Q(ζm) : Q(ζm) ∩Q(

√
d)] = ϕ(m)/2 = ordm p2 =

ordm(N(p)), implying that R[G] is clean.
Suppose that (b) holds. Then N(p) = p and ordqi p = qi−1(q−1)/2 is odd for all i ∈ [1, �]. Let m be a

positive divisor of n with m ≥ 3. Then d | m and hence [Q(ζm) : Q(ζm) ∩Q(
√
d)] = ϕ(m)/2 = ordm p =

ordm(N(p)). Therefore R[G] is clean.

Suppose that (c) holds. Then N(p) = p, ordqi1 p = qi−1
1 (q1 − 1)/2 is odd, p is a primitive root of qj2,

and gcd(ordqi1 p, ordqi2 p) = 1 for all i ∈ [1, �1] and j ∈ [1, �2]. Let m be a positive divisor of n with m ≥ 3.

If m = qt2 or 2qt2 for some 1 ≤ t ≤ �2, then d � m and hence [Q(ζm) : Q(ζm)∩Q(
√
d)] = ϕ(m) = ordm p =

ordm(N(p)). Otherwise d | m and hence [Q(ζm) : Q(ζm) ∩ Q(
√
d)] = ϕ(m)/2 = ordm p = ordm(N(p)).

Therefore R[G] is clean.
Suppose that (d) holds. Then N(p) = p. Let m be a positive divisor of n with m ≥ 3. If m = qt11 ,

or 2qt11 , or qt22 , or 2qt22 for some 1 ≤ t1 ≤ �1 or some 1 ≤ t2 ≤ �2, then d � m and hence [Q(ζm) :

Q(ζm) ∩ Q(
√
d)] = ϕ(m) = ordm p = ordm(N(p)). If m = qt11 qt22 or 2qt11 qt22 , then d | m and hence

[Q(ζm) : Q(ζm) ∩Q(
√
d)] = ϕ(m)/2 = ordm p = ordm(N(p)). Therefore R[G] is clean. �

Next we characterize when such a group ring is ∗-clean. We first prove the following lemma.

Lemma 4.3. Let d �= 1 be a non-zero square free integer. Then Q(
√
d)(ζn + ζ−1

n ) = Q(
√
d)(ζn) if and

only if either
(
d < 0 and Δ | n )

or n ≤ 2, where n ∈ N and Δ is the discriminant of Q(
√
d).

Proof. If n ≤ 2, it is obvious that Q(
√
d)(ζn + ζ−1

n ) = Q(
√
d)(ζn). Now we let n ≥ 3.
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Suppose that d < 0 and Δ | n. Then by Lemma 4.1 Q(
√
d) ⊂ Q(ζn) and hence Q(

√
d)(ζn + ζ−1

n ) ⊂
Q(ζn). Since n ≥ 3 and d < 0, we have

[Q(ζn) : Q(ζn + ζ−1
n )] = [Q(

√
d)(ζn + ζ−1

n ) : Q(ζn + ζ−1
n )] = 2 .

Therefore Q(
√
d)(ζn + ζ−1

n ) = Q(ζn) = Q(
√
d)(ζn).

Suppose that d > 0. Then Q(
√
d)(ζn + ζ−1

n ) ⊂ R and by n ≥ 3, we have Q(
√
d)(ζn) �⊂ R. Hence

Q(
√
d)(ζn + ζ−1

n ) �= Q(
√
d)(ζn).

Suppose that d < 0 and Δ � n. Thus by Lemma 4.1
√
d �∈ Q(ζn). Therefore [Q(

√
d)(ζn) : Q] = 2ϕ(n)

and [Q(
√
d)(ζn + ζ−1

n ) : Q] = ϕ(n). It follows that Q(
√
d)(ζn + ζ−1

n ) �= Q(
√
d)(ζn). �

Proposition 4.4. Let G be a finite abelian group with exponent n. Then Q(
√
d)[G] is ∗-clean if and only

if n ≥ 3 and either d > 0 or Δ � n, where Δ is the discriminant of Q(
√
d).

Proof. This result follows from [4, Theorem 1.2] and Lemma 4.3. �

Theorem 4.5. Let K = Q(
√
d) be a quadratic field for some non-zero square-free integer d �= 1, O

its ring of integers, p ⊂ O a nonzero prime ideal with pZ = p ∩ O, and G a finite abelian group with
p � exp(G). Let Δ be the discriminant of the field extension K/Q. Then

1. if d > 0, then Op[G] is ∗-clean if and only Op[G] is clean and exp(G) ≥ 3.
2. if d < 0, then Op[G] is ∗-clean if and only if Δ � exp(G), p is a primitive root of unity of exp(G),

exp(G) ≥ 3, and
(
Δ
p

)
= 1 or 0.

Proof. 1. Let d > 0. Suppose Op[G] is clean and exp(G) ≥ 3. Then by Proposition 4.4 Q(
√
d)[G] is

∗-clean. It follows from Theorem 2.3 that Op[G] is ∗-clean.
Conversely, suppose Op[G] is ∗-clean. Then by Theorem 2.3 Q(

√
d)[G] is ∗-clean. It follows from

Proposition 4.4 that exp(G) ≥ 3.
2. Let d < 0. Suppose that Δ � exp(G), p is a primitive root of unity of exp(G), exp(G) ≥ 3, and(

Δ
p

)
= 1 or 0. Then by Theorem 1.3 Op is clean and by Proposition 4.4 Q(

√
d)[G] is ∗-clean. It follows

from Theorem 2.3 that Op[G] is ∗-clean.
Conversely, suppose Op[G] is ∗-clean. Then by Theorem 2.3 Q(

√
d)[G] is ∗-clean and hence by Propo-

sition 4.4 exp(G) ≥ 3 and Δ � exp(G). It follows from Theorem 1.3.1 that p is a primitive root of unity
of exp(G) and

(
Δ
p

)
= 1 or 0. �

We close the paper with the following examples which provide some (∗-clean or non ∗-clean) clean
group rings for each case of the characterizations of Theorems 1.3 and 4.5.

Example 4.6. 1. Let O be the ring of integers of Q(
√
d) and let G be a finite abelian group with

gcd(exp(G), d) = 1, where d �= 1 is a square free integer and exp(G) �= 4 has a primitive root.
Suppose that d = δd0 such that d0 is the maximal odd positive divisor of d. Thus δ ∈ {−1, 2,−2}.
For every prime p with p ≡ 1 (mod 8d0), we have

(
d
p

)
=

(
d0

p

)
= 1. Since there exists x ∈

N with gcd(x, exp(G)) = 1 such that ordexp(G) x = ϕ(exp(G)), for every prime p with p ≡ x
(mod exp(G)), we have ordexp(G) p = ϕ(exp(G)). Note that v2(exp(G)) ≤ 1. By Dirichlet’s prime
number theorem, there is a prime p such that p ≡ 1 (mod 8d0) and p ≡ x (mod exp(G)). Let
p ⊂ O be a prime ideal such that p∩Z = pZ. Then by Theorem 1.3.1 Op[G] is clean. If exp(G) ≥ 3,
then by Theorem 4.5 Op[G] is ∗-clean.

2. Let O be the ring of integers of Q(
√−2), let p ⊂ O be a prime ideal with p ∩ Z = 3Z, and let G

be a finite abelian group with exp(G) = 8. Then Theorem 1.3.2 and Theorem 4.5.2 imply that
Op[G] is clean but not ∗-clean.

3. Let O be the ring of integers of Q(
√
3), let p ⊂ O be a prime ideal with p ∩ Z = 11Z, and let G

be a finite abelian group with exp(G) = 12. Then Theorem 1.3.2 and Theorem 4.5.1 imply that
Op[G] is clean as well as ∗-clean.
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4. Let O be the ring of integers of Q(
√
5), let p ⊂ O be a prime ideal with p ∩ Z = 19Z, and let G

be a finite abelian group with exp(G) = 5. Then Theorem 1.3.3.a and Theorem 4.5.1 imply that
Op[G] is clean as well as ∗-clean.

5. Let O be the ring of integers of Q(
√−3), let p ⊂ O be a prime ideal with p ∩ Z = 5Z, and let G

be a finite abelian group with exp(G) = 6. Then Theorem 1.3.3.a and Theorem 4.5.2 imply that
Op[G] is clean but not ∗-clean.

6. Let O be the ring of integers of Q(
√
33), let p ⊂ O be a prime ideal with p ∩ Z = 2Z, and let G

be a finite abelian group with exp(G) = 33. Then Theorem 1.3.3.d and Theorem 4.5.1 imply that
Op[G] is clean as well as ∗-clean.
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