期刊论文详细信息
JOURNAL OF ALGEBRA 卷:517
On the Sn-invariant F-conjecture
Article
Moon, Han-Bom1  Swinarski, David1 
[1] Fordham Univ, Dept Math, New York, NY 10023 USA
关键词: Moduli space;    Rational curves;    Birational geometry;    Nef cone;    Base point free divisor;   
DOI  :  10.1016/j.jalgebra.2018.08.030
来源: Elsevier
PDF
【 摘 要 】

By using classical invariant theory, we reduce the S-n-invariant F-conjecture to a feasibility problem in polyhedral geometry. We show by computer that for n <= 19, every integral S-n-invariant F-nef divisor on the moduli space of genus zero stable n-pointed curves is semi-ample, over arbitrary characteristic. Furthermore, for n <= 16, we show that for every integral S-n-invariant nef (resp. ample) divisor D on the moduli space, 2D is base-point-free (resp. very ample). As applications, we obtain the nef cone of the moduli space of stable curves without marked points, and the semi-ample cone of the moduli space of genus 0 stable maps to Grassmannian for small numerical values. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_08_030.pdf 415KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次