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By using classical invariant theory, we reduce the Sn-invariant 
F-conjecture to a feasibility problem in polyhedral geometry. 
We show by computer that for n ≤ 19, every integral 
Sn-invariant F-nef divisor on the moduli space of genus 
zero stable n-pointed curves is semi-ample, over arbitrary 
characteristic. Furthermore, for n ≤ 16, we show that for 
every integral Sn-invariant nef (resp. ample) divisor D on 
the moduli space, 2D is base-point-free (resp. very ample). 
As applications, we obtain the nef cone of the moduli space of 
stable curves without marked points, and the semi-ample cone 
of the moduli space of genus 0 stable maps to Grassmannian 
for small numerical values.
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1. Introduction

When one studies birational geometric aspects of a projective variety X, the first step 
is to understand two cones of divisors in N1(X): the effective cone Eff(X) and the nef 
cone Nef(X). The first cone contains information on rational contractions of X, and the 
second cone contains data on regular contractions of X.
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In this paper, we study the moduli space M0,n of genus 0 stable n-pointed curves. 
Its elementary construction in [20] suggests that its geometry is similar to that of toric 
varieties, and therefore many people conjectured that Eff(M0,n) and Nef(M0,n) are poly-
hedral. However, the birational geometric properties of M0,n seem to be very complicated. 
The cone of effective divisors was conjectured to be generated by boundary divisors. How-
ever, now there are many known examples of non-boundary extremal effective divisors 
([29,5,26]). Doran, Giansiracusa, and Jensen showed that the effectivity of a divisor class 
depends on the base ring, and there are generators of the Cox ring which do not lie on ex-
tremal rays of Eff(M0,n) ([7]). Furthermore, recently it was shown that M0,n is not a Mori 
dream space for n ≥ 10 ([6,12,17]). On the other hand, the Sn-invariant part Eff(M0,n)Sn

is simplicial and generated by symmetrized boundary divisors {Bi =
∑

|I|=i BI} ([23, 
Theorem 1.3]).

For Nef(M0,n), there has been less progress, but there is an explicit conjectural descrip-
tion. From the analogy with toric varieties again, a natural candidate of the generating 
set of the Mori cone of M0,n is the set of one-dimensional boundary strata, called F-
curves.

Definition 1.1. An effective divisor D =
∑

bIBI on M0,n is F-nef if for any F-curve F , 
D · F ≥ 0.

Although this definition uses intersection theory, we can explicitly state the set of 
linear inequalities with respect to the coefficients {bI} ([13, (0.14)]). Thus we can formally 
define F-nefness over Spec Z, as well.

Fulton conjectured that the Mori cone of M0,n is generated by F-curves. Dually:

Conjecture 1.2 (F-conjecture). A divisor on M0,n is nef if and only if it is F-nef.

This conjecture was shown for n ≤ 7 in [23] by Keel and McKernan in characteristic 0. 
However, as n grows, the Picard number of M0,n grows exponentially, so M0,8 is already 
out of reach.

On the other hand, we may ask the same question for Sn-invariant divisors:

Conjecture 1.3 (Sn-invariant F-conjecture). An Sn-invariant divisor on M0,n is nef if 
and only if it is F-nef.

In characteristic 0, Gibney proved Conjecture 1.3 for n ≤ 24 ([11]). Recently, Fe-
dorchuk showed that the Sn-invariant F-conjecture is true for n ≤ 16 in arbitrary 
characteristic ([10]). In fact, he proved a stronger result: for n ≤ 16, an Sn-invariant 
F-nef divisor is boundary semi-ample (Definition 5.3), which implies that it is nef. In 
Section 5, we show that the boundary semi-ampleness of Fedorchuk is equivalent to 
G-semi-ampleness, which is the key notion to our computational approach.
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1.1. Results

In this paper, we translate Conjecture 1.3 into a feasibility problem in polyhedral 
geometry, namely, the nonemptiness of certain polytopes. We use this approach to show 
the following result.

Theorem 1.4 (Theorem 4.1).

(1) For n ≤ 19, over Spec Z, every Sn-invariant F-nef divisor on M0,n is semi-ample.
(2) For n ≤ 16, over Spec Z, for every Sn-invariant F-nef divisor D on M0,n, 2D is 

base-point-free.

By using [24] or [28], we obtain the following consequence.

Theorem 1.5 (Theorem 4.7). Suppose n ≤ 16. Over any algebraically closed field, for 
every integral Sn-invariant ample divisor A on M0,n, 2A is very ample.

We immediately obtain the following two corollaries.

Corollary 1.6. For n ≤ 19, over any algebraically closed field, Nef(M0,n/Sn) is equal to 
the F-nef cone and every nef divisor on M0,n/Sn is semi-ample.

Corollary 1.7. For n ≤ 19, over any algebraically closed field, the Mori cone of M0,n/Sn

is generated by F-curves.

This result also yields the description of the nef cones of some other moduli spaces. 
By [13, Theorem 0.3], we obtain the nef cone of Mg, whose description was a question 
raised by Mumford.

Corollary 1.8. Over any algebraically closed field, for g ≤ 19, the nef cone of Mg, the 
moduli space of genus g stable curves, is equal to the F-nef cone.

By [3, Theorem 1.1] and [4, Theorem 1.1], we obtain the nef cone of the moduli space 
of genus 0 stable maps to a Grassmannian, including the case of projective space.

Corollary 1.9. Let k, n, and d be positive integers such that 1 ≤ k ≤ n − 1 and d ≤ 19. 
Let M0,0(Gr(k, n), d) be the moduli space of genus 0 stable maps to the Grassmannian 
Gr(k, n). Over any algebraically closed field, Nef(M0,0(Gr(k, n), d)) coincides with the 
semi-ample cone, and it is polyhedral with explicit generators.

By [11], the Sn-invariant F-conjecture is known for n ≤ 24 in characteristic zero. Thus 
the nefness parts of the above four corollaries are already known in the same character-
istic. Fedorchuk’s work shows that these results are independent of the characteristic of 
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the base field and nefness can be strengthened to semi-ampleness for n ≤ 16; we extend 
these statements to n ≤ 19. Our new contributions are the base-point-freeness portion 
of Theorem 1.4 and a new derivation of the criterion in Corollary 3.16 via geometry 
and invariant theory. These results support the conjecture that the cone of Sn-invariant 
divisors of M0,n is in the Mori dream region.

1.2. Idea of the proof

The main ingredient of the proof of Theorem 1.4 is classical invariant theory, in 
particular graphical algebras.

A simple but crucial observation in this paper is that an Sn-invariant F-nef divisor 
D can be written as π∗(cD2) −

∑
i≥3 aiBi where π : M0,n → (P1)n/ /SL2 is a regular 

contraction and D2 is an ample divisor. Then the linear system |D| can be identified 
with a sub linear system |cD2|a of |cD2| on (P1)n/ /SL2 (Proposition 3.7). Thus the 
study of |D| can be reduced to the study of a non-complete linear system on (P1)n/ /SL2. 
Furthermore, there is a sub linear system |cD2|a,G ⊂ |cD2|a which can be described 
combinatorially via the graphical algebra. The Cox ring of (P1)n/ /SL2, which is the ring 
of SL2-invariant divisors on (P1)n, is classically known as the graphical algebra since 
the 19th century. Its generators can be described in terms of finite graphs, thus we may 
study it by using graph theory. By using the graphical algebra, we obtain a combinatorial 
description of |cD2|a,G and its base locus in terms of polytopes (Corollary 3.16).

1.3. Comparison with other cones

By using various geometric and combinatorial methods, several authors previously 
described some polyhedral lower bounds of Nef(M0,n). There is a natural embedding 
i : M0,n ↪→ XΔ into a non-proper toric variety. By taking the pull-back of the cone of 
semi-ample divisors, Gibney and Maclagan defined a polyhedral subcone i∗(GΔ) ([14]). 
On the other hand, by analyzing Keel’s relations carefully, Fedorchuk described a cone of 
semi-ample divisors whose linear system intersects nicely with every boundary stratum 
and called it the cone of boundary semi-ample divisors ([10]). In Proposition 5.2, we 
show that for an Sn-invariant divisor, these two cones and our new cone of G-semi-ample 
divisors all coincide, even though these constructions look very different from each other. 
We regard this as weak evidence in support of the Sn-invariant F-conjecture.

1.4. A remark on the computational complexity

Gibney’s proof in [11] of the Sn-invariant F-conjecture for n ≤ 24 already uses a 
computer verification. It is fair to ask why our new approach cannot beat the record. The 
major reason why her calculations extend farther than ours is that for the same n, the size 
of the feasibility problem in her approach is smaller than the corresponding problem our 
approach. Her approach finds a point on approximately an O(n)-dimensional polyhedral 
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cone (the dimension of the Sn-invariant Picard group of M0,n) while our approach tries 
to find a point on an O(n2)-dimensional cone (the number of edges of the complete 
graph Kn).

There is room to extend our computational result. To address questions of base-point-
freeness, we computed integer valued solutions in polytopes; for semi-ampleness, rational 
valued solutions would suffice, and may be faster to compute. Moreover, an advantage 
of our method is that it is very easy to parallelize – once we have a list of Sn-orbits 
in the set of F-points, we can perform the computation for all F-points at the same 
time. With a high-performance computing environment, we expect that one could easily 
go farther and perhaps beyond the current record. Finally, we would like to point out 
that surprisingly, for most divisors, it is enough to solve only a few (in many cases only 
one) feasibility problems by taking the intersection of all the polytopes whose feasibil-
ity we want to test. It would be an interesting future project to refine and extend our 
computational approach.

1.5. Structure of the paper

This paper is organized as follows. In Section 2, we recall the definition of the graph-
ical algebra. In Section 3, we translate the Sn-invariant F-conjecture into a polyhedral 
feasibility problem. Section 4 presents the proof of the main theorem, computational 
results, and some examples. We explain the comparison with other cones obtained by 
various authors in Section 5.
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2. Graphical algebra

In this section, we recall the definition and basic properties of graphical algebras, 
which are key algebraic tools in this approach to the Sn-invariant F-conjecture. We work 
over Z, but all of the results stated here are valid over any base ring.

The graphical algebra is a Z-algebra which was introduced to describe a result in 
classical invariant theory. Consider (P1)n, the space of n points on a projective line. 
There is a natural diagonal SL2-action on this space, which is induced by a homomor-
phism SL2 → PGL2 ∼= Aut(P1). The graphical algebra is the ring of SL2-invariant 
multi-homogeneous polynomials.
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Let [Xi : Yi] be the homogeneous coordinates of i-th factor of (P1)n. It is straight-
forward to check that Zij := (XiYj − XjYi) is an SL2-invariant polynomial, and their 
products are all invariant polynomials. We can index such polynomials by using finite 
digraphs. Let −→Γ be a finite directed graph on the vertex set [n] := {1, 2, · · · , n}, and 
let Γ be its underlying undirected graph. We allow multiple edges, but a loop is not 
allowed. For a vertex i, the degree of i (denoted by di) is the number of edges incident to 
i regardless of their directions. The multidegree of 

−→
Γ is defined by the degree sequence 

(d1, d2, · · · , dn) and denoted by deg
−→
Γ . Let V−→

Γ = VΓ be the set of vertices, and let E−→
Γ

be the set of directed edges. We define deg Γ := deg
−→Γ and EΓ is the set of undirected 

edges in Γ. For any I ⊂ [n], let wI be the number of edges connecting vertices in I. 
For notational simplicity, we set wij = w{i,j}, which is the number of edges connecting i
and j. So wI =

∑
i,j∈I wij . For e ∈ E−→

Γ , h(e) ∈ V−→
Γ is the head and t(e) ∈ V−→

Γ is the tail.
For each 

−→
Γ , let

Z−→
Γ :=

∏
e∈E(Γ)

(Xt(e)Yh(e) −Xh(e)Yt(e)).

Then

Z−→
Γ ∈ H0((P1)n,O(deg

−→
Γ ))SL2 .

We define the multiplication 
−→
Γ1 · −→Γ2 of two graphs 

−→
Γ1 and 

−→
Γ2 by a graph with the 

vertex set [n] and E−→Γ1·
−→Γ2

:= E−→Γ1
� E−→Γ2

, the disjoint union of the edge sets. Note that 
our graphs and directed graphs are not simple, so we allow several edges between two 
vertices. If two graphs 

−→
Γ1 and 

−→
Γ2 have common edges, then we retain all of them. Then 

deg
−→
Γ1 ·

−→
Γ2 = deg

−→
Γ1 + deg

−→
Γ2. Furthermore,

Z−→
Γ1·

−→
Γ2

= Z−→
Γ1

· Z−→
Γ2
.

Note that if we reverse the direction of an edge e ∈ E−→
Γ and make a new graph 

−→
Γ ′, then 

Z−→
Γ ′ = −Z−→

Γ .
The first fundamental theorem of invariant theory ([9, Theorem 2.1]) says that the 

ring of SL2-invariants of (P1)n is generated by the polynomials Z−→
Γ .

Definition 2.1. The (total) graphical algebra R of order n is defined by

R :=
⊕

L∈Pic((P1)n)

H0((P1)n, L)SL2 =
⊕

(a1,a2,··· ,an)∈Zn
≥0

H0((P1)n,O(a1, a2, · · · , an))SL2 .

The support of Z−→Γ is independent of the direction of each edge. Thus we may denote 
Supp(Z−→

Γ ) by DΓ. This SL2-invariant divisor on (P1)n, or a Weil divisor on (P1)n/ /SL2, 
is called a graphical divisor. The support of Zij is denoted by Dij .
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The homogeneous coordinate ring of the GIT quotient is a slice of R. Fix an effective 
linearization (a linearization with a nonempty semistable locus) L ∼= O(a1, a2, · · · , an). 
Then the homogeneous coordinate ring of (P1)n/ /LSL2 is

RL :=
⊕
d≥0

H0((P1)n, Ld)SL2 ⊂ R.

The ideal of relations is explicitly described in [18,19].
From now on, we will use the symmetric linearization O(1, 1, · · · , 1) only. In this case, 

the GIT quotient (P1)n/ /SL2 is a projective variety with a natural Sn-action permuting 
the n factors. If n is odd, it is regular. If n is even, there are 

(
n

n/2
)
/2 non-regular closed 

points which are associated to closed orbits of two distinct points with multiplicities n/2.
The generating set of RL has been well-understood since the 19th century by Kempe 

([21]). A combinatorial description, including the relation ideal, is given in [18]. We 
summarize the description here.

Theorem 2.2 ([21], [18, Theorem 2.3]). The homogeneous coordinate ring RL is generated 
by Z−→

Γ for 
−→
Γ with deg

−→
Γ = (ε, ε, · · · , ε) where ε = 2 if n is odd, and ε = 1 if n is even.

Let ei be the i-th standard vector in Zn ∼= Pic((P1)n). Each Dij on (P1)n/ /SL2 is the 
image of V (Zij) in (P1)n and Zij ∈ H0(O(ei + ej)). Thus Cl((P1)n/ /SL2) is identified 
with an index two sub-lattice of Pic((P1)n), generated by degDij = ei + ej . Note that a 
generator Dij of Cl((P1)n/ /SL2) has a simple moduli theoretic interpretation. Indeed,

Dij = {(p1, p2, · · · , pn) ∈ (P1)n//SL2 | pi = pj}.

Let D2 =
∑

Dij .

Lemma 2.3. The Sn-invariant Picard group Pic((P1)n/ /SL2)Sn is generated by 1
n−1D2

(resp. 2
n−1D2) when n is even (resp. odd).

Proof. On (P1)n/ /SL2, we denote the descent of the line bundle O(a1, a2, · · · , an) on 
(P1)n by O(a1, a2, · · · , an). By Kempf’s descent lemma ([8, Theorem 2.3]), we are able to 
check when a line bundle on (P1)n descends to (P1)n/ /SL2. If n is odd, it descends if and 
only if 

∑
ai is even. If n is even, there is one extra constraint: For any I ⊂ [n] with |I| =

n/2, 
∑

i∈I ai =
∑

i/∈I ai. The only line bundles satisfying this condition are the symmetric 
bundles O(a, a, · · · , a). Therefore if n is odd, Pic((P1)n/ /SL2) is isomorphic to an index 
two sub-lattice of Pic((P1)n) ∼= Zn. If n is even, Pic((P1)n/ /SL2) ∼= Z. In particular, 
O(1, 1, · · · , 1) (resp. O(2, 2, · · · , 2)) is an integral generator of Pic((P1)n/ /SL2)Sn ∼= Z

when n is even (resp. odd). Because O(D2) = O(n − 1, n − 1, · · · , n − 1), we obtain the 
desired result. �
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3. G-base-point-freeness

In this section, by using graphical algebra, we translate the Sn-invariant F-conjecture 
to a polyhedral feasibility problem. We work over Spec Z, unless there is an explicit 
assumption on the base scheme.

The following result explains an explicit connection between M0,n and (P1)n/ /SL2.

Theorem 3.1 ([20], [16, Theorem 4.1 and 8.3]). There is a birational contraction mor-
phism

π : M0,n → (P1)n//SL2.

Remark 3.2. In [2], Alexeev and the second author studied nef divisors on M0,n obtained 
by pulling back nef divisors on (P1)n/ /SL2. These “GIT divisors” were used to show that 
log canonical models of M0,n are Hassett’s moduli spaces of weighted stable curves. Here, 
we examine certain linear systems for one of these divisors in much greater detail.

For any I ⊂ [n] with 2 ≤ I ≤ n/2, let BI ⊂ M0,n be the associated boundary 
divisor, and let Bi :=

∑
|I|=i BI . The image of Bij := B{i,j} is Dij . For I ⊂ [n] with 

3 ≤ |I| < n/2, BI is contracted by π, and its image is

π(BI) = {(p1, p2, · · · , pn) | pi = pj for all i, j ∈ I}.

If p : ((P1)n)ss → (P1)n/ /SL2 is the GIT quotient map, then π(BI) is the image p(WI)
of WI := V (Zij)i,j∈I ⊂ ((P1)n)ss.

When n is even and |I| = n/2, BI = BIc . Then π(BI) = π(BIc) is an isolated singular 
point on (P1)n/ /SL2 and the associated closed orbit is

{(p1, p2, · · · , pn) | pi = pj for all i, j ∈ I or i, j ∈ Ic}.

Thus π(BI) is the image p(WI) of WI := V (Zij)i,j∈I ∩V (Zij)i,j∈Ic . We denote π(BI) =
p(WI) by VI for all I.

By Theorem 2.2, D2 is very ample on (P1)n/ /SL2 since O(D2) = O(n − 1, n − 1, · · · ,
n − 1). We have

π∗(D2) =
�n/2�∑
i≥2

(
i

2

)
Bi (1)

([22, Lemma 5.3]). Since π is a regular contraction, the complete linear system |π∗(D2)|
is base-point-free on M0,n. Indeed, π∗(D2) is an extremal ray of Nef(M0,n)Sn ([1, Propo-
sition 6.8]).

The following is a very simple but important observation.
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Lemma 3.3. Every non-trivial Sn-invariant F-nef Q-divisor on M0,n can be written 
uniquely as

π∗(cD2) −
∑
i≥3

aiBi

for some rational numbers c > 0 and 0 ≤ ai < c
(
i
2
)
. Furthermore, it is integral if and 

only if ai ∈ Z and c ∈ 1
n−1Z (resp. c ∈ 2

n−1Z) when n is even (resp. n is odd).

For notational simplicity, we set a1 = a2 = 0.

Proof. Since F-nefness is defined formally, it is sufficient to prove the result over any 
algebraically closed field. In N1(M0,n)Sn , by [23, Theorem 1.3], {Bi}2≤i≤�n/2� forms a 
Q-basis. By Equation (1), it is straightforward to check that {π∗(D2), Bi}3≤i≤�n/2� is 
also a basis. Thus we have the existence and the uniqueness of the expression. Since 
Eff(M0,n)Sn is generated by Bi for 2 ≤ i ≤ 
n/2� and every Sn-invariant F-nef divisor 
is big ([11, Proposition 4.5]), an Sn-invariant F-nef divisor is a strictly positive linear 
combination of Bi’s. From (1), ai < c

(
i
2
)

and c > 0. Let Fj be any F-curve class whose 
associated partition has parts {1, 1, j, n − 2 − j} for 1 ≤ j ≤ 
n/2� − 2. Then since Fj is 
contracted by π,

0 ≤ Fj · (π∗(cD2) −
∑
i≥3

aiBi) = aj + aj+2 − 2aj+1,

so the sequence {aj} is convex. From a1 = a2 = 0, inductively we obtain ai ≥ 0 for all i.
The last assertion follows from Lemma 2.3, since each Bi are all integral. �

Definition 3.4. For a non-trivial integral Sn-invariant F-nef divisor D = π∗(cD2) −∑
i≥3 aiBi, let |cD2|a be the sub linear system of |cD2| on (P1)n/ /SL2 consisting of 

the divisors whose multiplicity along VI is at least a|I|.

Lemma 3.5. Let D = π∗(cD2) −
∑

i≥3 aiBi be an integral Sn-invariant F-nef divisor. The 
complete linear system |D| is identified with |cD2|a on (P1)n/ /SL2.

Proof. Since D is non-trivial, c > 0 by Lemma 3.3. For any E ∈ |cD2|a, π∗E = E′ +∑
i≥3 aiBi and E′ ∈ |D|. Thus we have an injective map |cD2|a → |D|. Any divisor 

F ∈ |D| can be written as F +
∑

i≥3 aiBi = π∗F ′ for some F ′ ∈ |cD2|, and from the 
expression F ′ ∈ |cD2|a. Thus we have a map |D| → |cD2|a. It is straightforward to see 
that they are inverses of each other. �
Definition 3.6. For a divisor E ∈ |cD2|a, let Ẽ ∈ |D| be π∗(E) −

∑
i≥3 aiBi, the divisor 

identified with E via the isomorphism |D| ∼= |cD2|a.

Note that Ẽ is not the proper transform of E in general.
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The non complete sub linear system |cD2|a is key to understanding the base-point-
freeness or the semi-ampleness of |D|; unfortunately, it is still difficult to analyze. We 
will define a sub linear system of |cD2|a which can be studied in purely combinatorial 
terms.

Recall that for any I ⊂ [n], wI is the number of edges connecting vertices in I. Recall 
also that for notational simplicity, we set a2 = 0.

Proposition 3.7. Let D = π∗(cD2) −
∑

i≥3 aiBi be an integral Sn-invariant F-nef divisor. 
Let DΓ be a graphical divisor associated to a graph Γ. Then DΓ ∈ |cD2|a if and only if

(1) deg Γ = (c(n − 1), c(n − 1), · · · , c(n − 1));
(2) For every I ⊂ [n] with 2 ≤ |I| ≤ n/2, wI ≥ a|I|;

Proof. The condition (1) is exactly DΓ ∈ |cD2|, because O(cD2) = O(c(n − 1),
c(n − 1), · · · , c(n − 1)). Note that for 3 ≤ |I| < n/2, a general point of VI is smooth. 
Thus DΓ vanishes on VI with multiplicity at least a|I| if and only if p∗(DΓ) vanishes on 
WI = V (Zij)i,j∈I with multiplicity at least a|I| if and only if Γ has at least ai edges 
connecting vertices in I.

When n is even and |I| = n/2, VI is an isolated singular point and it is the image 
of WI = V (Zij)i,j∈I ∩ V (Zij)i,j∈Ic on ((P1)n)ss. Suppose that ZΓ satisfies the following 
condition:

(*) For every I ⊂ [n] with |I| = n/2, wI + wIc ≥ 2an/2.

We claim that this condition is equivalent to the condition that multiplicity along Bn/2
is at least an/2.

Consider the following commutative diagram:

(BlWI
(P1)n)s

q

p̃

((P1)n)ss

p

M0,n BlWI
(P1)n//SL2

q̄
(P1)n//SL2

The vertical arrows are GIT quotients and q is the blow-up along WI . The superscript 
ss (resp. s) denotes the semistable (resp. stable) locus. In [22, Theorem 1.1], it was 
shown that Hassett’s contraction π : M0,n → (P1)n/ /SL2 is decomposed into M0,n →
BlWI

(P1)n/ /SL2
q̄→ (P1)n/ /SL2 and q̄ is Kirwan’s partial desingularization.

For any DG ∈ |cD2|, p∗(DG) is an SL2-invariant divisor on ((P1)n)ss. Its multiplicity 
along WI is at least 2a|I| = 2an/2. Thus q∗p∗(DG) has the multiplicity at least 2an/2
along the exceptional divisor EI . But since −Id ∈ SL2 acts on EI nontrivially, 2EI

descends to BI . Therefore the multiplicity along BI on BlWI
(P1)n/ /SL2, which is equal 

to the multiplicity along BI on M0,n, is at least an/2. The converse is similar.
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Since the degree of each vertex is c(n − 1), wI = cn(n − 1)/2 −
∑

i∈I,j∈Ic wij = wIc . 
Thus we may reduce Condition (*) to (2). �
Definition 3.8. Let D = π∗(cD2) −

∑
i≥3 aiBi be a non-trivial Sn-invariant F-nef divisor 

with c, ai ∈ Z. Let |cD2|a,G ⊂ |cD2|a be the sub linear system generated by DΓ satisfying 
two conditions in Proposition 3.7. Let |D|G ⊂ |D| be the sub linear system which is 
identified with |cD2|a,G via the identification

|D| ∼= |cD2|a.

In other words, |D|G is generated by D̃Γ for Γ in Proposition 3.7.

Remark 3.9. In general, |D|G is not equal to |D|. Equivalently, |cD2|a,G is not equal to 
|cD2|a. See Example 4.6.

The following lemma is straightforward. (It is also a special case of [10, Lemma 2.3.3]. 
We thank one of the anonymous referees for this observation.)

Lemma 3.10. Let D = π∗(cD2) −
∑

i≥3 aiBi be an integral Sn-invariant F-nef divisor. Let 
B =

⋂
I∈T BI be a boundary stratum indexed by a nonempty subset T ⊂ {I ⊂ [n] | 2 ≤

|I| ≤ 
n/2�}. Then a general point in B is not in the support of D̃Γ ∈ |D|G if and only 
if for every I ∈ T with |I| ≤ n/2, wI = a|I|.

Definition 3.11. An integral Sn-invariant F-nef divisor D = π∗(cD2) −
∑

i≥3 aiBi is called 
G-base-point-free if |D|G is base-point-free. It is G-semi-ample if |mD|G is base-point-free 
for some m � 0.

This sub linear system is particularly nice because the base locus can be described in 
a combinatorial way.

Lemma 3.12. Let D = π∗(cD2) −
∑

i≥3 aiBi be an integral Sn-invariant F-nef divisor. 
Then the base locus Bs(|D|G) is a union of closures of boundary strata.

Proof. For D̃Γ ∈ |D|G,

Supp(D̃Γ) =
⋃
I

BI

where the sum is taken over all I where the number of edges connecting vertices in I is 
strictly larger than a|I|. Since |D|G is generated by D̃Γ,

Bs(|D|G) =
⋂

D̃Γ∈|D|G

Supp(D̃Γ). �
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Proposition 3.13. Let D = π∗(cD2) −
∑

i≥3 aiBi be an integral Sn-invariant F-nef divisor. 
Then D is G-base-point-free if and only if for every F-point F = ∩I∈TBI , there is a graph 
Γ such that

(1) deg Γ = (c(n − 1), c(n − 1), · · · , c(n − 1));
(2) For each I ⊂ [n] with 2 ≤ |I| ≤ n/2, wI ≥ a|I|;
(3) For each J ∈ T with |J | ≤ n/2, wJ = a|J|;

Proof. The above condition implies that the base locus of |D|G does not contain any 
F-point. Since Bs(|D|G) is a union of boundary strata by Lemma 3.12, if it is non-empty, 
then there must be at least one F-point on it. Thus |D|G is base-point-free. �

Since G-base-point-freeness implies base-point-freeness, Proposition 3.13 provides a 
purely combinatorial sufficient condition for being a base-point-free divisor.

Note that sums and scalar multiples of graphical divisors are graphical divisors, too. 
So it is straightforward to see that for any two G-base-point-free (resp. G-semi-ample) 
divisors D and D′, D+D′ and their nonnegative scalar multiples are all G-base-point-free 
(resp. G-semi-ample).

Definition 3.14. Let GS(M0,n) be the convex cone generated by G-semi-ample divisors 
in N1(M0,n)Sn .

We have the following obvious implications for Sn-invariant divisors:

G-base-point-free ⇒ G-semi-ample ⇒ semi-ample ⇒ nef ⇒ F -nef. (2)

Theorem 3.15. The cone GS(M0,n) of G-semi-ample divisors of M0,n is closed and poly-
hedral.

Proof. We may consider a multigraph Γ as a graph weighting w : EKn
→ Q where 

EKn
is the set of edges on the complete graph Kn, by setting w(ij) = wij , the number 

of edges between i and j. Consider V := Q
(n
2
)

with coordinates {wij}1≤i<j≤n. This 
space can be regarded as the space of graph weightings. By representing any non-trivial 
Sn-invariant F-nef divisor in the form π∗(cD2) −

∑
i≥3 aiBi, we may identify N1(M0,n)Sn

with Q�n/2�−1 whose coordinates are (c, ai)3≤i≤�n/2�. For each F-point F =
⋂

J∈T BJ , 
we can define a polyhedral cone Q(n, F ) ⊂ V ×N1(M0,n)Sn by the following inequalities 
and equations:

(1) c, ai, wij ≥ 0;
(2)

∑
j 
=i wij = c(n − 1);

(3)
∑

i,j∈I wij ≥ a|I| for each I with 3 ≤ |I| ≤ n/2;
(4)

∑
i,j∈J wij = a|J| for each J ∈ T with |J | ≤ n/2.
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Let ρ : V × N1(M0,n)Sn → N1(M0,n)Sn be the projection defined by

ρ(wij , c, ai) = π∗(cD2) −
∑
i≥3

aiBi = (c, ai). (3)

For an integral Sn-invariant F-nef divisor D = π∗(cD2) −
∑

i≥3 aiBi, Bs(|D|G) does not 
contain an F-point F :=

⋂
J∈T BJ if and only if ρ−1(D) ∩Q(n, F ) has an integral point. 

So Bs(|mD|G) does not contain F for some m if and only if ρ−1(D) ∩ Q(n, F ) has a 
rational point, if and only if D ∈ ρ(Q(n, F )).

Therefore |mD|G is base-point-free for some m � 0 if and only if D ∈
⋂

F ρ(Q(n, F ))
where the intersection is taken over all F-points. Therefore it is polyhedral and closed. �

Thus we obtain a polyhedral lower bound of Nef(M0,n)Sn .
By the proof of Theorem 3.15, we obtain the following corollary, which provides a 

computational approach to the Sn-invariant F-conjecture. For the reader’s convenience, 
we state it in a self-contained form.

Corollary 3.16. Let ρ : V × N1(M0,n)Sn → N1(M0,n)Sn be a projection given by 
ρ(wij , c, ai) = (c, ai). For each F-point F =

⋂
J∈T BJ , let Q(n, F ) be a polyhedral cone 

in V × N1(M0,n)Sn defined by

(1) c, ai, wij ≥ 0;
(2)

∑
j 
=i wij = c(n − 1);

(3)
∑

i,j∈I wij ≥ a|I| for each I with 3 ≤ |I| ≤ n/2;
(4)

∑
i,j∈I wij = a|I| for each J ∈ T with |J | ≤ n/2.

Let D := π∗(cD2) −
∑

aiBi = (c, ai) ∈ N1(M0,n)Sn be an Sn-invariant F-nef divisor. 
Then D is G-semi-ample (hence semi-ample) if and only if D ∈ ρ(Q(n, F )) for every 
F-point F .

Remark 3.17. The polytopes defined by these sets of inequalities were previously ob-
tained by Fedorchuk ([10, Lemma 2.3.3]). We will discuss the equivalence of our result 
and Fedorchuk’s for Sn-invariant F-nef divisors in more detail in Proposition 5.4. Al-
though the polytopes turn out to be the same, we obtain them by a completely different 
approach.

4. Computational results

In this section we list several computational results. The calculations can be found on 
the webpage [25].

Theorem 4.1. For n ≤ 19, over Spec Z, the Sn-invariant F-nef cone coincides with the 
G-semi-ample cone.
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Proof. Since GS(M0,n) is a convex subcone of the Sn-invariant F-nef cone, it is sufficient 
to show that every integral generator of an extremal ray of the Sn-invariant F-nef cone 
is G-semi-ample. By Corollary 3.16, it is sufficient to show the feasibility of the polytope 
ρ−1(D) ∩ Q(n, F ) for each integral generator D and an F-point F . By using Sage [27]
and Gurobi [15], we checked that for n ≤ 19, such a polytope is nonempty. �

Indeed a more refined result is true. Recall that the set of integral points on a strongly 
convex rational polyhedral cone forms a monoid and its generating set is called the 
Hilbert basis. By checking G-base-point-freeness of the Hilbert basis of the Sn-invariant 
F-nef cone, we obtain the following result.

Theorem 4.2.

(1) For n ≤ 16, over Spec Z, for any integral Sn-invariant F-nef divisor D, 2D is 
G-base-point-free.

(2) For n ≤ 11 or 13, over Spec Z, for any integral Sn-invariant F-nef divisor D, D is 
G-base-point-free.

Remark 4.3. This computation was faster than we anticipated. To check the G-base-
point-freeness of a divisor D we need to do the following computation.

(1) Take a representative of an F-point F from each Sn-orbit. Let P be the set of the 
representatives.

(2) For each F ∈ P , compute the non-emptiness of ρ−1(D) ∩Q(n, F ).

But when n is small, for many of the divisors D that we tested, ρ−1(D) ∩∩F∈PQ(n, F ) is 
nonempty. Thus, for these divisors, it was sufficient to solve just one feasibility problem, 
instead of one feasibility problem for each F ∈ P . For such divisors D, in the linear 
system |D|, we found an effective sum of boundaries E whose support does not contain 
at least one F-point in each Sn-orbit in the set of all F-points. By Sn-symmetry, this is 
sufficient for the G-base-point-freeness.

Further tricks for speeding up the calculation are described at [25].

Conjecture 4.4. For any integral Sn-invariant F-nef divisor D, 2D is G-base-point-free. 
In particular, 2D is base-point-free.

Remark 4.5. For n ≤ 15, most of the integral divisors are G-base-point-free. More pre-
cisely, for n = 12, there are only two integral Sn-invariant F-nef divisors which are not 
base-point-free. For n = 14, 15, there is only one for each n.

Example 4.6. Let n = 12. Consider the divisor class

D = 1 (4B2 + 12B3 + 13B4 + 18B5 + 16B6) = π∗( 4
D2) −B4 − 2B5 − 4B6.
11 11
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Here we give an example of an integral Sn-invariant base-point-free divisor which is not 
G-base-point-free. Then the base locus Bs(|D|G) contains the S12-orbit of an F-point

F =B{1,2} ∩B{1,2,3} ∩B{4,5} ∩B{4,5,6} ∩B{1,2,3,4,5,6} ∩B{7,8} ∩B{7,8,9}

∩B{10,11} ∩B{10,11,12}.

One can check that the locus of curves having four tails with three marked points is 
the base locus of |D|G. The base locus is a disjoint union of 15400 loci, each of which is 
isomorphic to (M0,4)5.

On the other hand, by using a computer and Kapranov’s model, we constructed a 
divisor E ∈ |D| such that F /∈ E. Therefore |D|G �= |D|. See [25].

Now the very ampleness of Sn-invariant ample divisors is an immediate consequence 
of the result of Keel and Tevelev.

Theorem 4.7. Let n ≤ 16. Over any algebraically closed field, for every integral 
Sn-invariant ample divisor A on M0,n, 2A is very ample.

Proof. By [28, Theorem 1.5] or [24, Theorem 1.1], the log canonical divisor KM0,n
+ B

is very ample. Note that for every F-curve F , (KM0,n
+ B) · F = 1. So if A is an 

Sn-invariant integral ample divisor, then A − (KM0,n
+B) is an Sn-invariant nef divisor, 

so 2(A − (KM0,n
+ B)) is base-point-free by Theorem 4.2. Therefore

2A = 2(A− (KM0,n
+ B)) + 2(KM0,n

+ B)

is a sum of a base-point-free divisor and a very ample divisor, which is very ample. �
Remark 4.8. By Remark 4.5, when n ≤ 11 or n = 13, every integral Sn-invariant nef 
divisor is base-point-free. So for those n, every integral Sn-invariant ample divisor is very 
ample.

5. Comparison to other cones

Several lower bounds of Nef(M0,n) have been previously described in the literature. 
In this section we compare the Sn-invariant part of these cones with the cone GS(M0,n)
of G-semi-ample divisors introduced in this paper.

The first lower bound is due to Gibney and Maclagan. In [14], they define a lower 
bound of Nef(M0,n), by using an embedding of M0,n into a non-proper toric variety. Let 
XΔ be a toric variety whose associated fan is Δ ⊂ Rn. Suppose that there is a projective 
toric variety XΣ with Δ ⊂ Σ.

Definition 5.1. The cone GΔ ⊂ Pic(XΔ)Q is the semi-ample cone of XΔ.
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Let Y be a projective variety with an embedding i : Y ↪→ XΔ. Then we obtain a lower 
bound

i∗(GΔ) ⊂ Nef(Y ).

The cone i∗(GΔ) is polyhedral and can be described combinatorially. These properties 
follow from the corresponding properties of GΔ:

Proposition 5.2 ([14, Proposition 2.3]). Let D =
∑

i∈Δ(1) aiDi ∈ Pic(XΔ). Then the 
following are equivalent:

(1) D ∈ GΔ;
(2) D ∈

⋂
σ∈Δ pos(Di | i /∈ σ);

(3) there is a piecewise linear convex function ψ : NR → R and ψ(vi) = ai where vi is 
the first integral vector in the ray i.

(4) D ∈
⋃

Σ i∗Σ(Nef(XΣ)) where the union is over all projective toric varieties XΣ with 
Δ ⊂ Σ and iΣ : XΔ → XΣ is the inclusion. Furthermore, we may assume that 
Δ(1) = Σ(1).

It is well-known that M0,n can be embedded into a non-proper toric variety XΔ where 
Δ is the space of phylogenetic trees. Thus we obtain a lower bound i∗(GΔ) of Nef(M0,n).

The second lower bound is due to Fedorchuk. In [10], he introduces a combinatorial 
notion called boundary semi-ampleness.

Definition 5.3. Let D be a divisor on M0,n. D is boundary semi-ample if for every x ∈
M0,n, there exists an effective boundary Q-divisor E ∈ |D| such that x /∈ Supp(E).

The following result was pointed out to us by Fedorchuk.

Proposition 5.4. Suppose that D is an Sn-invariant divisor on M0,n. Then the following 
three conditions are equivalent:

(1) D ∈ GS(M0,n);
(2) D is boundary semi-ample;
(3) D ∈ i∗(GΔ).

Proof. For an F-nef divisor D = π∗cD2−
∑

aiBi, recall that |D|G is the sub linear system 
of |D| generated by graphical divisors. Let |D|B be the sub linear system generated by 
effective sums of boundary divisors. Since any graphical divisor is an effective sum of 
boundaries, |D|G ⊂ |D|B . Conversely, if E =

∑
I cIBI ∈ |D|B is an effective sum 

of boundaries, then for π : M0,n → (P1)n/ /SL2, π∗(E) =
∑

|I|=2 cIDI , so this is a 

graphical divisor DΓ for some graph Γ. Then D̃Γ = π∗DΓ −
∑

i≥3 aiBi =
∑

|I|=2 cIBI +
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∑
|I|≥3 dIBI for some dI . Then dI = cI and E = D̃Γ because all divisors BI with 

|I| ≥ 3 are independent. Thus E ∈ |D|G and |D|G = |D|B . Therefore, G-semi-ampleness, 
which is the base-point-freeness of |mD|G for some m > 0, is equivalent to boundary 
semi-ampleness, which is precisely the base-point-freeness of |mD|B for some m > 0.

Because Pic(XΔ) ∼= Pic(M0,n) and each boundary divisor BI is a restriction of a 
toric boundary, from item (2) of Proposition 5.2, it is straightforward to see that D is 
boundary semi-ample if and only if D ∈ i∗(GΔ). �
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