期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:323 |
Computing the Stanley depth | |
Article | |
Popescu, Dorin1  Qureshi, Muhammad Imran2  | |
[1] Univ Bucharest, Inst Math Simion Stoilow, Bucharest 014700, Romania | |
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan | |
关键词: Monomial ideals; Stanley decompositions; Stanley depth; | |
DOI : 10.1016/j.jalgebra.2009.11.025 | |
来源: Elsevier | |
【 摘 要 】
Let Q and Q' be two monomial primary ideals of a polynomial algebra S over a field. We give an upper bound for the Stanley depth of S/(Q boolean AND Q') which is reached if Q, Q' are irreducible. Also we show that Stanley's Conjecture holds for Q(1) boolean AND Q. S/(Q(1) boolean AND Q(2) boolean AND Q(3)), (Q(i))(i) being some irreducible monomial ideals of S. (C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2009_11_025.pdf | 241KB | download |