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Let Q and Q ′ be two monomial primary ideals of a polynomial
algebra S over a field. We give an upper bound for the Stanley
depth of S/(Q ∩ Q ′) which is reached if Q , Q ′ are irreducible.
Also we show that Stanley’s Conjecture holds for Q 1 ∩ Q 2,
S/(Q 1 ∩ Q 2 ∩ Q 3), (Q i)i being some irreducible monomial ideals
of S .
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Introduction

Let K be a field and S = K [x1, . . . , xn] be the polynomial ring over K in n variables and M a finitely
generated multigraded (i.e. Z

n-graded) S-module. Given z ∈ M a homogeneous element in M and
Z ⊆ {x1, . . . , xn}, let zK [Z ] ⊂ M be the linear K -subspace of all elements of the form zf , f ∈ K [Z ].
This subspace is called Stanley space of dimension |Z |, if zK [Z ] is a free K [Z ]-module. A Stanley
decomposition of M is a presentation of the K -vector space M as a finite direct sum of Stanley
spaces D: M = ⊕r

i=1 zi K [Zi]. Set sdepth D = min{|Zi |: i = 1, . . . , r}. The number

sdepth(M) := max
{

sdepth(D): D is a Stanley decomposition of M
}

is called the Stanley depth of M . This is a combinatorial invariant which has some common properties
with the homological invariant depth. Stanley conjectured (see [17]) that sdepth M � depth M , but this
conjecture is still open for a long time in spite of some results obtained mainly for n � 5 (see [1,16,8,
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2,12,13]). An algorithm to compute the Stanley depth is given in [9] and was used here to find several
examples. Very important in our computations were the results from [3,6,15].

Let Q , Q ′ be two monomial primary ideals such that dim S/(Q + Q ′) = 0. Then

sdepth S/
(

Q ∩ Q ′) � max

{
min

{
dim

(
S/Q ′),⌈dim(S/Q )

2

⌉}
,min

{
dim(S/Q ),

⌈
dim(S/Q ′)

2

⌉}}
,

and the bound is reached when Q , Q ′ are non-zero irreducible monomial ideals (see Proposition 2.2,
or more general in Corollary 2.4), � a

2 	 being the smallest integer � a/2, a ∈ Q.
Let Q 1, Q 2, Q 3 be three non-zero irreducible monomial ideals of S . If dim S/(Q 1 + Q 2) = 0 then

sdepth(Q 1 ∩ Q 2) �
⌈

dim(S/Q 1)

2

⌉
+

⌈
dim(S/Q 2)

2

⌉

(see Lemma 4.3, or more general in Theorem 4.5). In this case, our bound is better than the bound
given by [10] and [11] (see Remark 4.2). Using these results we show that sdepth(Q 1 ∩ Q 2) �
depth(Q 1 ∩ Q 2), and

sdepth S/(Q 1 ∩ Q 2 ∩ Q 3) � depth S/(Q 1 ∩ Q 2 ∩ Q 3),

that is Stanley’s Conjecture holds for Q 1 ∩ Q 2 and S/(Q 1 ∩ Q 2 ∩ Q 3) (see Theorems 5.6, 5.9).

1. A lower bound for Stanley’s depth of some cycle modules

We start with few simple lemmas which we include for the completeness of our paper.

Lemma 1.1. Let Q be a monomial primary ideal in S = K [x1, . . . , xn]. Suppose that
√

Q = (x1, . . . , xr) where
1 � r � n, Then there exists a Stanley decomposition

S/Q =
⊕

uK [xr+1, . . . , xn],

where the sum runs on monomials u ∈ K [x1, . . . , xr] \ (Q ∩ K [x1, . . . , xr]).

Proof. Given u, v ∈ K [x1, . . . , xr] \ (Q ∩ K [x1, . . . , xr]) and h, g ∈ K [xr+1, . . . , xn] with uh = vg then we
get u = v , g = h. Thus the given sum is direct. Note that there exist just a finite number of monomials
in K [x1, . . . , xr] \ (Q ∩ K [x1, . . . , xr]). Let 0 �= α ∈ (S \ Q ) be a monomial. Then α = u f , where f ∈
K [xr+1, . . . , xn] and u ∈ K [x1, . . . , xr]. Since α /∈ Q we have u /∈ Q . Thus S/Q ⊂ ⊕

uK [xr+1, . . . , xn],
the other inclusion being trivial. �
Lemma 1.2. Let Q be a monomial primary ideal in S = K [x1, . . . , xn]. Then sdepth S/Q = dim S/Q =
depth S/Q .

Proof. Let dim S/Q = n − r for some 0 � r � n. We have dim S/Q � sdepth S/Q by [1, Theorem 2.4].
Renumbering variables we may suppose that

√
Q = (x1, . . . , xr). Using the above lemma we get the

converse inequality. As S/Q is Cohen Macaulay it follows dim S/Q = depth S/Q , which is enough. �
Lemma 1.3. Let I , J be two monomial ideals of S = K [x1, . . . , xn]. Then

sdepth
(

S/(I ∩ J )
)
� max

{
min

{
sdepth(S/I), sdepth

(
I/(I ∩ J )

)}
,

min
{

sdepth(S/ J ), sdepth
(

J/(I ∩ J )
)}}

.
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Proof. Consider the following exact sequence of S-modules:

0 → I/(I ∩ J ) → S/(I ∩ J ) → S/I → 0.

By [14, Lemma 2.2], we have

sdepth
(

S/(I ∩ J )
)
� min

{
sdepth(S/I), sdepth

(
I/(I ∩ J )

)}
. (1)

Similarly, we get

sdepth
(

S/(I ∩ J )
)
� min

{
sdepth(S/ J ), sdepth

(
J/(I ∩ J )

)}
. (2)

The proof ends using (1) and (2). �
Proposition 1.4. Let Q , Q ′ be two monomial primary ideals in S = K [x1, . . . , xn] with different associated
prime ideals. Suppose that

√
Q = (x1, . . . , xt),

√
Q ′ = (xr+1, . . . , xn) for some integers t, r with 0 � r � t � n.

Then

sdepth
(

S/
(

Q ∩ Q ′))
� max

{
min

v

{
r, sdepth

(
Q ′ ∩ K [xt+1, . . . , xn]), sdepth

((
Q ′ : v

) ∩ K [xt+1, . . . , xn]
)}

,

min
w

{
n − t, sdepth

(
Q ∩ K [x1, . . . , xr]

)
, sdepth

(
(Q : w) ∩ K [x1, . . . , xr]

)}}
,

where v, w run in the set of monomials containing only variables from {xr+1, . . . , xt}, w /∈ Q , v /∈ Q ′ .

Proof. If Q , or Q ′ is zero then the inequality holds trivially. If r = 0 then Q ∩ K [x1, . . . , xr] =
Q ∩ K = 0, and the inequality is clear. A similar case is t = n. Thus we may suppose 1 � r � t < n.
Applying Lemma 1.3 it is enough to show that

sdepth
(

Q ′/
(

Q ∩ Q ′)) � min
{

sdepth
(

Q ′ ∩ K [xt+1, . . . xn]
)
, sdepth

((
Q ′ : v

) ∩ K [xt+1, . . . xn]
)}

,

where v is a monomial of K [xr+1, . . . , xn] \ (Q ∩ Q ′). We have a canonical injective map

Q ′/
(

Q ∩ Q ′) → S/Q .

By Lemma 1.1 we get

Q ′/
(

Q ∩ Q ′) = Q ′ ∩
(⊕

uK [xt+1, . . . , xn]
)

=
⊕(

Q ′ ∩ uK [xt+1, . . . , xn]
)
,

where u runs in the monomials of K [x1, . . . , xt] \ Q . Here

Q ′ ∩ uK [xt+1, . . . , xn] = u
(

Q ′ ∩ K [xt+1, . . . , xn]
)

if u ∈ K [x1, . . . , xr]

and

Q ′ ∩ uK [xt+1, . . . , xn] = u
((

Q ′ : u
) ∩ K [xt+1, . . . , xn]) if u /∈ K [x1, . . . , xr].
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If u ∈ Q ′ then Q ′ : u = S . We have

Q ′/
(

Q ∩ Q ′) =
(⊕

u
(

Q ′ ∩ K [xt+1, . . . , xn])) ⊕
(⊕

zK [xt+1, . . . , xn]
)

⊕
(⊕

uv
((

Q ′ : v
) ∩ K [xt+1, . . . , xn])),

where the sum runs for all monomials u ∈ (K [x1, . . . , xr] \ Q ), z ∈ Q ′ \ Q and v ∈ K [xr+1, . . . , xt],
v /∈ Q ′ ∪ Q . Now it is enough to apply [14, Lemma 2.2] to get the above inequality. �
Theorem 1.5. Let Q and Q ′ be two irreducible monomial ideals of S. Then

sdepthS S/
(

Q ∩ Q ′) � max

{
min

{
dim

(
S/Q ′),⌈dim(S/Q ) + dim(S/(Q + Q ′))

2

⌉}
,

min

{
dim(S/Q ),

⌈
dim(S/Q ′) + dim(S/(Q + Q ′))

2

⌉}}
.

Proof. If the associated prime ideals of Q , Q ′ are the same then the above inequality says that
sdepthS S/(Q ∩ Q ′) � dim S/Q , which follows from Lemma 1.2. Thus we may suppose that the
associated prime ideals of Q , Q ′ are different. We may suppose that Q is generated in variables
{x1, . . . , xt} and Q ′ is generated in variables {xr+1, . . . , xp} for some integers 0 � r � t � p � n. Since
dim(S/Q ) = n − t , dim(S/Q ′) = n − p + r and dim(S/(Q + Q ′)) = n − p we get

n − t −
⌊

p − t

2

⌋
=

⌈
(n − t) + (n − p)

2

⌉
=

⌈
dim(S/Q ) + dim(S/(Q + Q ′))

2

⌉
,

� a
2 � being the biggest integer � a/2, a ∈ Q. Similarly, we have

n − p + r −
⌊

r

2

⌋
=

⌈
dim(S/Q ′) + dim(S/(Q + Q ′))

2

⌉
.

On the other hand by [6], and [15, Theorem 2.4] sdepth(Q ′ ∩ K [xt+1, . . . , xn]) = n − t − � p−t
2 � and

sdepth(Q ∩ K [x1, . . . , xr, xp+1, . . . , xn]) = n − p + r − � r
2 �. In fact, the quoted result says in particular

that sdepth of each irreducible ideal L depends only on the number of variables of the ring and
the number of variables generating L (a description of irreducible monomial ideals is given in [18]).
Since (Q ′ : v) ∩ K [xt+1, . . . , xn] is still an irreducible ideal generated by the same variables as Q ′ we
conclude that

sdepth
((

Q ′ : v
) ∩ K [xt+1, . . . , xn]) = sdepth

(
Q ′ ∩ K [xt+1, . . . , xn]),

v /∈ Q ′ being any monomial. Similarly,

sdepth
(
(Q : w) ∩ K [x1, . . . , xr, xp+1, . . . , xn]) = sdepth

(
Q ∩ K [x1, . . . , xr, xp+1, . . . , xn]

)
.

It follows that our inequality holds if p = n by Proposition 1.4.
Set S ′ = K [x1, . . . , xp], q = Q ∩ S ′ , q′ = Q ′ ∩ S ′ . As above (case p = n) we get

sdepthS ′ S ′/(q ∩ q′) � max

{
min

{
dim

(
S ′/q′),⌈dim(S ′/q)

2

⌉}
,min

{
dim

(
S ′/q

)
,

⌈
dim(S ′/q′)

2

⌉}}

= max

{
min

{
r,

⌈
p − t

2

⌉}
,min

{
p − t,

⌈
r

2

⌉}}
.



D. Popescu, M.I. Qureshi / Journal of Algebra 323 (2010) 2943–2959 2947
Using [9, Lemma 3.6], we have

sdepthS

(
S/

(
Q ∩ Q ′)) = sdepthS

(
S/

(
q ∩ q′)S

) = n − p + sdepthS ′
(

S ′/
(
q ∩ q′)).

It follows that

sdepthS

(
S/

(
Q ∩ Q ′)) � n − p + max

{
min

{
r,

⌈
p − t

2

⌉}
,min

{
p − t,

⌈
r

2

⌉}}

= max

{
min

{
n − p + r,n − p +

⌈
p − t

2

⌉}
,min

{
n − t,n − p +

⌈
r

2

⌉}}

= max

{
min

{
n − p + r,n − t −

⌊
p − t

2

⌋}
,min

{
n − t,n − p + r −

⌊
r

2

⌋}}
,

which is enough. �
2. An upper bound for Stanley’s depth of some cycle modules

Let Q , Q ′ be two monomial primary ideals of S . Suppose that Q is generated in variables
{x1, . . . , xt} and Q ′ is generated in variables {xr+1, . . . , xn} for some integers 1 � r � t < n. Thus the
prime ideals associated to Q ∩ Q ′ have dimension � 1 and it follows depth(S/(Q ∩ Q ′)) � 1. Then
sdepth(S/(Q ∩ Q ′)) � 1 by [5, Corollary 1.6], or [7, Theorem 1.4]. Let D: S/(Q ∩ Q ′) = ⊕s

i=1 ui K [Zi]
be a Stanley decomposition of S/(Q ∩ Q ′) with sdepth D = sdepth(S/(Q ∩ Q ′)). Thus |Zi | � 1 for
all i. Renumbering (ui, Zi) we may suppose that 1 ∈ u1 K [Z1], so u1 = 1. Note that Zi cannot have
mixed variables from {x1, . . . , xr} and {xt+1, . . . , xn} because otherwise ui K [Zi] will be not a free
K [Zi]-module. As | Z1 |� 1 we may have either Z1 ⊂ {x1, . . . , xr} or Z1 ⊂ {xt+1, . . . , xn}.

Lemma 2.1. Suppose Z1 ⊂ {x1, . . . , xr}. Then sdepth(D) � min{r, �n−t
2 	}.

Proof. Clearly sdepth(D) �| Z1 |� r. Let a ∈ N be such that xa
i ∈ Q ′ for all t < i � n. Let T =

K [yt+1, . . . , yn] and ϕ : T → S be the K -morphism given by yi → xa
i . The composition map ψ : T →

S → S/(Q ∩ Q ′) is injective. Note also that we may consider Q ′ ∩ K [xt+1, . . . , xn] ⊂ S/(Q ∩ Q ′) since
Q ∩ K [xt+1, . . . , xn] = 0. We have

(yt+1, . . . , yn) = ψ−1(Q ′ ∩ K [xt+1, . . . , xn]) =
⊕

ψ−1(u j K [Z j] ∩ Q ′ ∩ K [xt+1, . . . , xn]
)
.

If u j K [Z j] ∩ Q ′ ∩ K [xt+1, . . . , xn] �= 0 then u j ∈ K [xt+1, . . . , xn]. Also we have Z j ⊂ {xt+1, . . . , xn},
otherwise u j K [Z j] is not free over K [Z j]. Moreover, if ψ−1(u j K [Z j] ∩ Q ′ ∩ K [xt+1, . . . , xn]) �= 0 then

u j = x
bt+1
t+1 . . . xbn

n , bi ∈ N is such that if xi /∈ Z j , t < i � n, then a | bi , let us say bi = aci for some ci ∈ N.

Denote ci = � bi
a 	 when xi ∈ Z j . We get

ψ−1(u j K [Z j] ∩ Q ′ ∩ K [xt+1, . . . , xn]
) = y

ct+1
t+1 . . . ycn

n K [V j],

where V j = {yi: t < i � n, xi ∈ Z j}. Thus ψ−1(u j K [Z j] ∩ Q ′ ∩ K [xt+1, . . . , xn]) is a Stanley space
of T and so D induces a Stanley decomposition D′ of (yt+1, . . . , yn) such that sdepth(D) �
sdepth(D′) � sdepth(yt+1, . . . , yn) because | Z j |=| V j |. Consequently sdepth(D) � �n−t

2 	 by [3] and
so sdepth(D) � min{r, �n−t

2 	}.
Note also that if t = n, or r = 0 then the same proof works; so sdepth S/(Q ∩ Q ′) = 0, which is

clear because depth S/(Q ∩ Q ′) = 0 (see [5, Corollary 1.6]). �
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Proposition 2.2. Let Q , Q ′ be two non-zero monomial primary ideals of S with different associated prime
ideals. Suppose that dim(S/(Q + Q ′)) = 0. Then

sdepthS

(
S/

(
Q ∩ Q ′))

� max

{
min

{
dim

(
S/Q ′),⌈dim(S/Q )

2

⌉}
,min

{
dim(S/Q ),

⌈
dim(S/Q ′)

2

⌉}}
.

Proof. If one of Q , Q ′ is of dimension zero then depth(S/(Q ∩ Q ′)) = 0 and so by [5, Corol-
lary 1.6] (or [7, Theorem 1.4]) sdepth(S/(Q ∩ Q ′)) = 0, that is the inequality holds trivially. Thus
we may suppose after renumbering of variables that Q is generated in variables {x1, . . . , xt} and
Q ′ is generated in variables {xr+1, . . . , xp} for some integers t, r, p with 1 � r � t < p � n, or
0 � r < t � n. By hypothesis we have p = n. Let D be the Stanley decomposition of S/(Q ∩ Q ′)
such that sdepth(D) = sdepth(S/(Q ∩ Q ′)). Let Z1 be defined as in Lemma 2.1, that is K [Z1] is the
Stanley space corresponding to 1. If Z1 ⊂ {x1, . . . , xr} then by Lemma 2.1,

sdepth(D) � min

{
r,

⌈
n − t

2

⌉}
= min

{
dim

(
S/Q ′),⌈dim(S/Q )

2

⌉}
.

If Z1 ⊂ {xt+1, . . . , xn} we get analogously

sdepth(D) � min

{
n − t,

⌈
r

2

⌉}
= min

{
dim(S/Q ),

⌈
dim(S/Q ′)

2

⌉}
,

which shows our inequality. �
Theorem 2.3. Let Q and Q ′ be two non-zero monomial primary ideals of S with different associated prime
ideals. Then

sdepthS S/
(

Q ∩ Q ′) � max

{
min

{
dim

(
S/Q ′),⌈dim(S/Q ) + dim(S/(Q + Q ′))

2

⌉}
,

min

{
dim(S/Q ),

⌈
dim(S/Q ′ + dim(S/(Q + Q ′)))

2

⌉}}
.

Proof. As in the proof of Proposition 2.2 we may suppose that Q is generated in variables {x1, . . . , xt}
and Q ′ is generated in variables {xr+1, . . . , xp} for some integers 1 � r � t < p � n, or 0 � r < t � n
but now we have not in general p = n. Set S ′ = K [x1, . . . , xp], q = Q ∩ S ′ , q′ = Q ′ ∩ S ′ . Using Proposi-
tion 2.2 we get

sdepthS

(
S/

(
q ∩ q′)) � max

{
min

{
dim

(
S/q′),⌈dim(S/q)

2

⌉}
,min

{
dim(S/q),

⌈
dim(S/q′)

2

⌉}}
.

By [9, Lemma 3.6] we have

sdepthS

(
S/

(
Q ∩ Q ′)) = sdepthS

(
S/

(
q ∩ q′)S

) = n − p + sdepthS ′
(

S ′/
(
q ∩ q′)).

As in the proof of Theorem 1.5, it follows that
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sdepthS

(
S/

(
Q ∩ Q ′)) � n − p + max

{
min

{
r,

⌈
p − t

2

⌉}
,min

{
p − t,

⌈
r

2

⌉}}

= max

{
min

{
n − p + r,n − t −

⌊
p − t

2

⌋}
,min

{
n − t,n − p + r −

⌊
r

2

⌋}}
,

which is enough. �
Corollary 2.4. Let Q and Q ′ be two non-zero monomial irreducible ideals of S with different associated prime
ideals. Then

sdepthS S/(Q ∩ Q ′) = max

{
min

{
dim

(
S/Q ′),⌈dim(S/Q ) + dim(S/(Q + Q ′))

2

⌉}
,

min

{
dim(S/Q ),

⌈
dim(S/Q ′) + dim(S/(Q + Q ′))

2

⌉}}
.

For the proof apply Theorem 1.5 and Theorem 2.3.

Corollary 2.5. Let P and P ′ be two different non-zero monomial prime ideals of S, which are not included one
in the other. Then

sdepthS S/
(

P ∩ P ′) = max

{
min

{
dim

(
S/P ′),⌈dim(S/P ) + dim(S/(P + P ′))

2

⌉}
,

min

{
dim(S/P ),

⌈
dim(S/P ′) + dim(S/(P + P ′))

2

⌉}}
.

Proof. For the proof apply Corollary 2.4. �
Corollary 2.6. Let � be a simplicial complex in n vertices with only two different facets F , F ′ . Then

sdepth K [�] = max

{
min

{∣∣F ′∣∣,⌈ |F | + |F ∩ F ′|
2

⌉}
,min

{
|F |,

⌈ |F ′| + |F ∩ F ′|
2

⌉}}
.

3. An illustration

Let S = K [x1, . . . , x6], Q = (x2
1, x2

2, x2
3, x2

4, x1x2x4, x1x3x4), Q ′ = (x2
4, x5, x6). By our Theorem 2.3 we

get

sdepth S/
(

Q ∩ Q ′) � max

{
min

{
3,

⌈
2

2

⌉}
,min

{
2,

⌈
3

2

⌉}}
= max{1,2} = 2.

On the other hand, we claim that I = ((Q : w) ∩ K [x1, x2, x3]) = (x2
1, x2

2, x2
3, x1x2, x1x3) for w = x4 and

sdepth I = 1 < 2 = sdepth(Q ∩ K [x1, x2, x3]). Thus our Proposition 1.4 gives

sdepth S/
(

Q ∩ Q ′) � max

{
min

{
3,

⌈
2

2

⌉}
,min

{
2,

⌈
3

2

⌉
,1

}}
= 1.

In this section, we will show that sdepth(S/(Q ∩ Q ′)) = 1.
First we prove our claim. Suppose that there exists a Stanley decomposition D of I with

sdepth D � 2. Among the Stanley spaces of D we have five important x2
1 K [Z1], x2

2 K [Z2], x2
3 K [Z3],
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x1x2 K [Z4], x1x3 K [Z5] for some subsets Zi ⊂ {x1, x2, x3} with |Zi | � 2. If Z4 = {x1, x2, x3} and Z5 con-
tains x2 then the last two Stanley spaces will have a non-zero intersection and if Z1 contains x2 then
the first and the fourth Stanley space will have non-zero intersection. Now if x2 /∈ Z5 and x2 /∈ Z1 then
the first and the last space will intersect. Suppose that Z4 = {x1, x2}. Then x2 /∈ Z1 (resp. x1 /∈ Z2) be-
cause otherwise the intersection of x1x2 K [Z4] with the first Stanley space (resp. the second one) will
be again non-zero. As |Z1|, |Z2| � 2 we get Z1 = {x1, x3}, Z2 = {x2, x3}. But x1 /∈ Z3 because otherwise
the first and the third Stanley space will contain x2

1x2
3, which is impossible. Similarly, x2 /∈ Z3, which

contradicts |Z3| � 2. The case Z5 = {x1, x3} gives a similar contradiction.
Now suppose that Z4 = {x1, x3}. If Z5 ⊃ {x1, x2} we see that the intersection of the last two Stanley

spaces from the above five, contains x2
1x2x3 and if Z5 = {x2, x3} we see that the intersection of the

same Stanley spaces contains x1x2x3. Contradiction (we saw that Z5 �= {x1, x3})! Hence sdepth D � 1
and so sdepth I = 1 using [5].

Next we show that sdepth S/(Q ∩ Q ′) = 1. Suppose that D′ is a Stanley decomposition of
S/(Q ∩ Q ′) such that sdepth S/(Q ∩ Q ′) = 2. We claim that D′ has the form

S/
(

Q ∩ Q ′) =
(⊕

v K [x5, x6]
)

⊕
(

s⊕
i=1

ui K [Zi]
)

for some monomials v ∈ (K [x1, . . . , x4] \ Q ), ui ∈ (Q ∩ K [x1, . . . , x4]) and Zi ⊂ {x1, x2, x3}. Indeed, let
v ∈ (K [x1, . . . , x4] \ Q ). Then vx5, vx6 belong to some Stanley spaces of D′ , let us say uK [Z ], u′K [Z ′].
The presence of x5 in u or Z implies that Z does not contain any xi , 1 � i � 3, otherwise uK [Z ] will
be not free over K [Z ]. Thus Z ⊂ {x5, x6}. As |Z | � 2 we get Z = {x5, x6} and similarly Z ′ = {x5, x6}.
Thus vx5x6 ∈ (uK [Z ] ∩ u′K [Z ′]) and it follows that u = u′ , Z = Z ′ because the sum in D′ is direct. It
follows that u|vx5, u|vx6 and so u|v , that is v = u f , f being a monomial in x5, x6. As v ∈ K [x1, . . . , x4]
we get f = 1 and so u = v.

A monomial w ∈ (Q \ Q ′) is not a multiple of x5, x6, because otherwise w ∈ Q ′ . Suppose w
belongs to a Stanley space uK [Z ] of D′ . If u ∈ (K [x1, . . . , x4] \ Q ) then as above D′ has also a
Stanley space uK [x5, x6] and both spaces contains u. This is false since the sum is direct. Thus
u ∈ (Q ∩ K [x1, . . . , x4]), which shows our claim.

Hence D′ induces two Stanley decompositions S/Q = ⊕
v∈(K [x1,...,x4]\Q ) v K [x5, x6], Q /(Q ∩ Q ′) =⊕s

i=1 ui K [Zi], where ui ∈ (Q ∩ K [x1, . . . , x4]) and Zi ⊂ {x1, x2, x3}. Then we get the following Stanley
decompositions

Q ∩ K [x1, . . . , x3] =
s⊕

i=1, ui /∈(x4)

ui K [Zi], I =
s⊕

i=1, x4|ui

(ui/x4)K [Zi].

As 2 � mini |Zi | we get sdepth I � 2. Contradiction!

4. A lower bound for Stanley’s depth of some ideals

Let Q , Q ′ be two non-zero irreducible monomial ideals of S such that
√

Q = (x1, . . . , xt),
√

Q ′ =
(xr+1, . . . , xp) for some integers r, t, p with 1 � r � t < p � n, or 0 = r < t < p � n, or 1 � r � t =
p � n.

Lemma 4.1. Suppose that p = n, t = r. Then

sdepth
(

Q ∩ Q ′) �
⌈

r

2

⌉
+

⌈
n − r

2

⌉
� n/2.

Proof. It follows 1 � r < p. Let f ∈ Q ∩ K [x1, . . . , xr], g ∈ Q ′ ∩ K [xr+1, . . . , xn] and M(T ) be the mono-
mials from an ideal T . The correspondence ( f , g) → f g defines a map ϕ : M(Q ∩ K [x1, . . . , xr]) ×



D. Popescu, M.I. Qureshi / Journal of Algebra 323 (2010) 2943–2959 2951
M(Q ′ ∩ K [xr+1, . . . , xn]) → M(Q ∩ Q ′), which is injective. If w is a monomial of Q ∩ Q ′ , let us
say w = f g for some monomials f ∈ K [x1, . . . , xr], g ∈ K [xr+1, . . . , xn] then f g ∈ Q and so f ∈ Q
because the variables xi , i > r are regular on S/Q . Similarly, g ∈ Q ′ and so w = ϕ(( f , g)), that is ϕ
is surjective. Let D be a Stanley decomposition of Q ∩ K [x1, . . . , xr],

D: Q ∩ K [x1, . . . , xr] =
s⊕

i=1

ui K [Zi]

with sdepth D = sdepth(Q ∩ K [x1, . . . , xr]) and D′ a Stanley decomposition of Q ′ ∩ K [xr+1, . . . , xn],

D′: Q ′ ∩ K [xr+1, . . . , xn] =
e⊕

j=1

v j K [T j]

with sdepth D′ = sdepth(Q ′ ∩ K [xr+1, . . . , xn]). They induce a Stanley decomposition

D′′: Q ∩ Q ′ =
e⊕

j=1

s⊕
i=1

ui v j K [Zi ∪ T j]

because of the bijection ϕ . Thus

sdepth
(

Q ∩ Q ′) � sdepth D′′ = min
i, j

(|Zi| + |T j|
)
� min

i
|Zi| + min

j
|T j|

= sdepth D + sdepth D′

= sdepth
(

Q ∩ K [x1, . . . , xr]
) + sdepth

(
Q ′ ∩ K [xr+1, . . . , xn])

=
(

r −
⌊

r

2

⌋)
+

(
n − r −

⌊
n − r

2

⌋)
=

⌈
r

2

⌉
+

⌈
n − r

2

⌉
� n/2. �

Remark 4.2. Suppose that n = 8, r = 1. Then by the above lemma we get sdepth(Q ∩ Q ′) �
� 1

2 	 + � 7
2 	 = 5. Since |G(Q ∩ Q ′)| = 7 we get by [10,11] the same lower bound sdepth(Q ∩ Q ′) �

8 − � 7
2 � = 5. If n = 8, r = 2 then by [10,11] we have sdepth(Q ∩ Q ′) � 8 − � 12

2 � = 2 but our previous
lemma gives sdepth(Q ∩ Q ′) � � 2

2 	 + � 6
2 	 = 4.

Lemma 4.3. Suppose that p = n. Then

sdepth
(

Q ∩ Q ′) �
⌈

r

2

⌉
+

⌈
n − t

2

⌉
.

Proof. We show that

Q ∩ Q ′ = (
Q ∩ Q ′ ∩ K [xr+1, . . . , xt]

)
S

⊕
(⊕

w

w
(((

Q ∩ Q ′) : w
) ∩ K [x1, . . . , xr, xt+1, . . . , xn]

))
,

where w runs in the monomials of K [xr+1, . . . , xt] \ (Q ∩ Q ′). Indeed, a monomial h of S has the
form h = f g for some monomials f ∈ K [xr+1, . . . , xt], g ∈ K [x1, . . . , xr, xt+1, . . . , xn]. Since Q , Q ′ are



2952 D. Popescu, M.I. Qureshi / Journal of Algebra 323 (2010) 2943–2959
irreducible we see that h ∈ Q ∩ Q ′ either when f is a multiple of a minimal generator of Q ∩ Q ′ ∩
K [xr+1, . . . , xt], or f /∈ (Q ∩ Q ′ ∩ K [xr+1, . . . , xt]) and then

h ∈ f
(((

Q ∩ Q ′) : f
) ∩ K [x1, . . . , xr, xt+1, . . . , xn]).

Let D be a Stanley decomposition of (Q ∩ Q ′ ∩ K [xr+1, . . . , xt])S ,

D: (
Q ∩ Q ′ ∩ K [xr+1, . . . , xt]

)
S =

s⊕
i=1

ui K [Zi]

with sdepth D = sdepth(Q ∩ Q ′ ∩ K [xr+1, . . . , xt])S and for all w ∈ (K [xr+1, . . . , xt] \ (Q ∩ Q ′)), let
D w be a Stanley decomposition of ((Q ∩ Q ′) : w) ∩ K [x1, . . . , xr, xt+1, . . . , xn],

D w : ((
Q ∩ Q ′) : w

) ∩ K [x1, . . . , xr, xt+1, . . . , xn] =
⊕

w

⊕
j

v w j K [T w j]

with sdepth D w = sdepth(((Q ∩ Q ′) : w) ∩ K [x1, . . . , xr, xt+1, . . . , xn]). Since K [xr+1, . . . , xt] \ (Q ∩ Q ′)
contains just a finite set of monomials we get a Stanley decomposition of Q ∩ Q ′ ,

D′: Q ∩ Q ′ =
(

s⊕
i=1

ui K [Zi]
)

⊕
(⊕

w

⊕
j

w v w j K [T w j]
)

,

where w runs in the monomials of K [xr+1, . . . , xt] \ (Q ∩ Q ′). Then

sdepth D′ = min
w

{sdepth D, sdepth D w}
= min

w

{
sdepth

(
Q ∩ Q ′ ∩ K [xr+1, . . . , xt]

)
S,

sdepth
(((

Q ∩ Q ′) : w
) ∩ K [x1, . . . , xr, xt+1, . . . , xn]

)}
.

But ((Q ∩ Q ′) : w) ∩ K [x1, . . . , xr, xt+1, . . . , xn] is still an intersection of two irreducible ideals and

sdepth
(((

Q ∩ Q ′) : w
) ∩ K [x1, . . . , xr, xt+1, . . . , xn]) �

⌈
r

2

⌉
+

⌈
n − t

2

⌉

by Lemma 4.1. We have sdepth(Q ∩ Q ′ ∩ K [xr+1, . . . , xt]) � 1 and so

sdepth
(

Q ∩ Q ′ ∩ K [xr+1, . . . , xt]
)

S � 1 + n − t + r

by [9, Lemma 3.6]. Thus

sdepth
(

Q ∩ Q ′) � sdepth D′ �
⌈

r

2

⌉
+

⌈
n − t

2

⌉
.

Note that the proof goes even when 0 � r < t � n (anyway sdepth Q ∩ Q ′ � 1 if n = t , r = 0). �
Lemma 4.4.

sdepth
(

Q ∩ Q ′) � n − p +
⌈

r

2

⌉
+

⌈
p − t

2

⌉
.
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Proof. As usual we see that there are now (n − p) free variables and it is enough to apply [9, Lemma
3.6] and Lemma 4.3. �
Theorem 4.5. Let Q and Q ′ be two non-zero irreducible monomial ideals of S. Then

sdepthS

(
Q ∩ Q ′) � dim

(
S/

(
Q + Q ′)) +

⌈
dim(S/Q ′) − dim(S/(Q + Q ′))

2

⌉

+
⌈

dim(S/Q ) − dim(S/(Q + Q ′))
2

⌉

�
⌈

dim(S/Q ′) + dim(S/Q )

2

⌉
.

Proof. After renumbering of variables, we may suppose as above that
√

Q = (x1, . . . , xt),
√

Q ′ =
(xr+1, . . . , xp) for some integers r, t, p with 1 � r � t < p � n, or 0 = r < t < p � n, or 1 � r �
t = p � n. If n = p, r = 0 then

√
Q ⊂ √

Q ′ and the inequality is trivial. It is enough to ap-
ply Lemma 4.4 because n − p = dim(S/(Q + Q ′)), r = dim(S/Q ′) − dim(S/(Q + Q ′)), p − t =
dim(S/Q ) − dim(S/(Q + Q ′)). �
Remark 4.6. If Q , Q ′ are non-zero irreducible monomial ideals of S with

√
Q = √

Q ′ then we have
sdepthS (Q ∩ Q ′) � 1 + dim S/Q .

Example 4.7. Let S = K [x1, x2], Q = (x1), Q ′ = (x2
1, x2). We have

sdepth
(

Q ∩ Q ′) �
⌈

dim(S/Q ′) + dim(S/Q )

2

⌉
=

⌈
1 + 0

2

⌉
= 1

by the above theorem. As Q ∩ Q ′ is not a principle ideal its Stanley depth is < 2. Thus

sdepth
(

Q ∩ Q ′) = 1.

Example 4.8. Let S = K [x1, x2, x3, x4, x5], Q = (x1, x2, x2
3), Q ′ = (x3, x4, x5). As dim(S/(Q + Q ′)) = 0,

dim S/Q = 2 and dim S/Q ′ = 2 we get

sdepth
(

Q ∩ Q ′) �
⌈

dim(S/Q ′) + dim(S/Q )

2

⌉
=

⌈
2 + 2

2

⌉
= 2

by the above theorem. Note also that

sdepth
(

Q ∩ Q ′ ∩ K [x1, x2, x4, x5]
) = sdepth(x1x4, x1x5, x2x4, x2x5)K [x1, x2, x4, x5] = 3,

and

sdepth
(((

Q ∩ Q ′) : x3
) ∩ K [x1, x2, x4, x5]

) = sdepth
(
(x1, x2)K [x1, x2, x4, x5]

)
= 4 −

⌊
2

2

⌋
= 3,

by [15]. But sdepth(Q ∩ Q ′) � 3 because of the following Stanley decomposition
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Q ∩ Q ′ = x1x4 K [x1, x4, x5] ⊕ x1x5 K [x1, x2, x5] ⊕ x2x4 K [x1, x2, x4] ⊕ x2x5 K [x2, x4, x5]
⊕ x2

3 K [x3, x4, x5] ⊕ x2x3 K [x2, x3, x4] ⊕ x1x3 K [x1, x2, x3] ⊕ x1x3x4 K [x1, x2, x4, x5]
⊕ x1x3x5 K [x1, x3, x5] ⊕ x2x3x5 K [x2, x3, x4, x5] ⊕ x1x2x4x5 K [x1, x2, x4, x5]
⊕ x1x2

3x4 K [x1, x3, x4, x5] ⊕ x1x2x3x5 K [x1, x2, x3, x5] ⊕ x1x2x2
3x4 K [x1, x2, x3, x4, x5].

5. Applications

Let I ⊂ S be a non-zero monomial ideal. A. Rauf presented in [14] the following:

Question 5.1. Does it hold the inequality

sdepth I � 1 + sdepth S/I?

The importance of this question is given by the following:

Proposition 5.2. Suppose that Stanley’s Conjecture holds for cyclic S-modules and the above question has a
positive answer for all monomial ideals of S. Then Stanley’s Conjecture holds for all monomial ideals of S.

For the proof note that sdepth I � 1 + sdepth S/I � 1 + depth S/I = depth I .

Remark 5.3. In [12] it is proved that Stanley’s Conjecture holds for all multigraded cycle modules over
S = K [x1, . . . , x5]. If the above question has a positive answer then Stanley’s Conjecture holds for all
monomial ideals of S . Actually this is true for all square free monomial ideals of S as [13] shows.

We show that the above question holds for the intersection of two non-zero irreducible monomial
ideals.

Proposition 5.4. Question 5.1 has a positive answer for intersections of two non-zero irreducible monomial
ideals.

Proof. First suppose that Q , Q ′ have different associated prime ideals. After renumbering of variables
we may suppose as above that

√
Q = (x1, . . . , xt),

√
Q ′ = (xr+1, . . . , xp) for some integers r, t, p with

1 � r � t < p � n, or 0 = r < t < p � n, or 1 � r � t = p � n. Then

sdepth
(

Q ∩ Q ′) � n − p +
⌈

r

2

⌉
+

⌈
p − t

2

⌉

by Lemma 4.4. Note that

sdepth
(

S/
(

Q ∩ Q ′)) = n − p + max

{
min

{
r,

⌈
p − t

2

⌉}
,min

{
p − t,

⌈
r

2

⌉}}

by Corollary 2.4. Thus

1 + sdepth
(

S/
(

Q ∩ Q ′)) � n − p +
⌈

r

2

⌉
+

⌈
p − t

2

⌉
� sdepth

(
Q ∩ Q ′).

Finally, if Q , Q ′ have the same associated prime ideal then sdepth(Q ∩ Q ′) � 1 + dim S/Q by Re-
mark 4.6 and so sdepth(Q ∩ Q ′) � 1 + sdepth S/(Q ∩ Q ′). �
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Next we will show that Stanley’s Conjecture holds for intersections of two primary monomial
ideals. We start with a simple lemma.

Lemma 5.5. Let Q , Q ′ be two primary ideals in S = K [x1, . . . , xn]. Suppose
√

Q = (x1, . . . , xt) and
√

Q =
(xr+1, . . . , xp) for integers 0 � r � t � p � n. Then sdepth(S/(Q ∩ Q ′)) � depth(S/(Q ∩ Q ′)), that is Stan-
ley’s Conjecture holds for S/(Q ∩ Q ′).

Proof. If either r = 0, or t = p then depth S/(Q ∩ Q ′) � n− p � sdepth(S/(Q ∩ Q ′)) by [9, Lemma 3.6].
Now suppose that r > 0, t < p and let S ′ = K [x1, . . . , xp] and q = Q ∩ S ′ , q′ = Q ′ ∩ S ′ . Consider the
following exact sequence of S ′-modules

0 → S ′/
(
q ∩ q′) → S ′/q ⊕ S ′/q′ → S ′/

(
q + q′) → 0.

By Lemma 1.2

depth
(

S ′/q ⊕ S ′/q′) = min
{

depth
(

S ′/q
)
,depth

(
S ′/q′)}

= min
{

dim
(

S ′/q
)
,dim

(
S ′/q′)}

= min{r, p − t} � 1 > 0

= depth
(

S ′/
(
q + q′)).

Thus by Depth Lemma (see e.g. [4])

depth
(

S ′/q ∩ q′) = depth
(

S ′/
(
q + q′)) + 1 = 1.

But sdepth(S ′/(q ∩ q′)) � 1 by [5, Corollary 1.6] and so

sdepth
(

S/
(

Q ∩ Q ′)) = sdepth
(

S ′/
(
q ∩ q′)) + n − p � 1 + n − p

= n − p + depth
(

S ′/
(
q ∩ q′))

= depth
(

S/
(

Q ∩ Q ′))
by [9, Lemma 3.6]. �
Theorem 5.6. Let Q , Q ′ be two non-zero irreducible ideals of S. Then sdepth(Q ∩ Q ′) � depth(Q ∩ Q ′),
that is Stanley’s Conjecture holds for Q ∩ Q ′ .

Proof. By Proposition 5.4, Question 5.1 has a positive answer, so by the proof of Proposition 5.2 it is
enough to know that Stanley’s Conjecture holds for S/(Q ∩ Q ′). This is given by the above lemma. �

Next we consider the cycle module given by an irredundant intersection of 3 irreducible ideals.

Lemma 5.7. Let Q 1 , Q 2 , Q 3 be three non-zero irreducible monomial ideals of S = K [x1, . . . , xn]. Then

sdepth
(
(Q 2 ∩ Q 3)/(Q 1 ∩ Q 2 ∩ Q 3)

)
� dim

(
S/(Q 1 + Q 2 + Q 3)

) +
⌈

dim(S/(Q 1 + Q 2)) − dim(S/(Q 1 + Q 2 + Q 3))

2

⌉



2956 D. Popescu, M.I. Qureshi / Journal of Algebra 323 (2010) 2943–2959
+
⌈

dim(S/(Q 1 + Q 3)) − dim(S/(Q 1 + Q 2 + Q 3))

2

⌉

�
⌈

dim(S/(Q 1 + Q 2)) + dim(S/(Q 1 + Q 3))

2

⌉
.

If Q 3 ⊂ Q 1 + Q 2 then

sdepth
(
(Q 2 ∩ Q 3)/(Q 1 ∩ Q 2 ∩ Q 3)

)
�

⌈
dim(S/Q 1) + dim(S/(Q 1 + Q 3))

2

⌉
.

Proof. Renumbering the variables we may assume that
√

Q 1 = (x1, . . . , xt) and
√

Q 2 + Q 3 =
(xr+1, . . . , xp), where 0 � r � t < p � n. If t = p then

√
Q 1 + Q 2 = √

Q 1 + Q 3 and the inequality
is trivial by [9, Lemma 3.6]. Let S ′ = K [x1, . . . , xp] and q1 = Q 1 ∩ S ′ , q2 = Q 2 ∩ S ′ , q3 = Q 3 ∩ S ′. We
have a canonical injective map (q2 ∩ q3)/(q1 ∩ q2 ∩ q3) → S ′/q1. Now by Lemma 1.1, we have

S ′/q1 =
⊕

uK [xt+1, . . . , xp]

and so

(q2 ∩ q3)/(q1 ∩ q2 ∩ q3) =
⊕(

(q2 ∩ q3) ∩ uK [xt+1, . . . , xp]),
where u runs in the monomials of K [x1, . . . , xt] \ (q1 ∩ K [x1, . . . , xt]). If u ∈ K [x1, . . . , xr] then

(q2 ∩ q3) ∩ uK [xt+1, . . . , xp] = u
(
q2 ∩ q3 ∩ K [xt+1, . . . , xp])

and if u /∈ K [x1, . . . , xr] then

(q2 ∩ q3) ∩ uK [xt+1, . . . , xp] = u
((

(q2 ∩ q3) : u
) ∩ K [xt+1, . . . , xp]).

Since (q2 ∩ q3) : u is still an intersection of irreducible monomial ideals we get by Lemma 4.3 that

sdepth
((

(q2 ∩ q3) : u
) ∩ K [xt+1, . . . , xp])

�
⌈

dim K [xt+1, . . . , xp]/q2 ∩ K [xt+1, . . . , xp]
2

⌉
+

⌈
dim K [xt+1, . . . , xp]/q3 ∩ K [xt+1, . . . , xp]

2

⌉
.

Also we have

q2/(q1 ∩ q2) =
⊕

u
(
q2 ∩ K [xt+1, . . . , xp]),

and it follows

S ′/(q1 + q2) ∼= (
S ′/q1

)
/
(
q2/(q1 ∩ q2)

) =
⊕

u
(

K [xt+1, . . . , xp]/q2 ∩ K [xt+1, . . . , xp]).
Thus dim S ′/(q1 + q2) = dim K [xt+1, . . . , xp]/q2 ∩ K [xt+1, . . . , xp] and similarly

dim S ′/(q1 + q3) = dim K [xt+1, . . . , xp]/q3 ∩ K [xt+1, . . . , xp].
Hence
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sdepth
(
(q2 ∩ q3)/(q1 ∩ q2 ∩ q3)

)
�

⌈
dim(S ′/(q1 + q2))

2

⌉
+

⌈
dim(S ′/(q1 + q3))

2

⌉

=
⌈

dim(S/(Q 1 + Q 2)) − dim(S/(Q 1 + Q 2 + Q 3))

2

⌉

+
⌈

dim(S/(Q 1 + Q 3)) − dim(S/(Q 1 + Q 2 + Q 3))

2

⌉
.

If Q 3 ⊂ Q 1 + Q 2 then (q2 ∩ q3) ∩ K [xt+1, . . . , xp] = q3 ∩ K [xt+1, . . . , xp] and so

sdepthS ′(q2 ∩ q3)/(q1 ∩ q2 ∩ q3) � sdepth
(
(q2 ∩ q3) ∩ K [xt+1, . . . , xp])

= p − t −
⌊

ht(q3 ∩ K [xt+1, . . . , xp])
2

⌋

=
⌈

p − t + dim K [xt+1, . . . , xp]/q3 ∩ K [xt+1, . . . , xp]
2

⌉

=
⌈

dim(S ′/q1) + dim(S ′/(q1 + q3))

2

⌉
.

Now it is enough to apply [9, Lemma 3.6]. �
Proposition 5.8. Let Q 1 , Q 2 , Q 3 be three non-zero irreducible ideals of S and R = S/Q 1 ∩ Q 2 ∩ Q 3 . Suppose
that dim S/(Q 1 + Q 2 + Q 3) = 0. Then

sdepth R � max

{
min

{
sdepth S/(Q 2 ∩ Q 3),

⌈
dim(S/(Q 1 + Q 2))

2

⌉
+

⌈
dim(S/(Q 1 + Q 3))

2

⌉}
,

min

{
sdepth S/(Q 1 ∩ Q 3),

⌈
dim(S/(Q 1 + Q 2))

2

⌉
+

⌈
dim(S/(Q 2 + Q 3))

2

⌉}
,

min

{
sdepth S/(Q 1 ∩ Q 2),

⌈
dim(S/(Q 3 + Q 2))

2

⌉
+

⌈
dim(S/(Q 1 + Q 3))

2

⌉}}
.

For the proof apply Lemma 1.3 and Lemma 5.7.

Theorem 5.9. Let Q 1 , Q 2 , Q 3 be three non-zero irreducible ideals of S and R = S/(Q 1 ∩ Q 2 ∩ Q 3). Then
sdepth R � depth R, that is Stanley’s Conjecture holds for R.

Proof. Applying [9, Lemma 3.6] we may reduce the problem to the case when

dim S/(Q 1 + Q 2 + Q 3) = 0.

If one of the Q i has dimension 0 then depth R = 0 and there exists nothing to show. Assume that
all Q i have dimension > 0. If one of the Q i has dimension 1 then depth R = 1 and by [5] (or [7]) we
get sdepth R � 1 = depth R . From now on we assume that all Q i have dimension > 1.

If Q 1 + Q 2 has dimension 0 and Q 3 �⊂ Q 1 + Q 2 then from the exact sequence

0 → R → S/Q 1 ⊕ S/Q 2 ∩ Q 3 → S/(Q 1 + Q 2) ∩ (Q 1 + Q 3) → 0,

we get depth R = 1 by Depth Lemma and we may apply [5] (or [7]) to get as above sdepth R � 1 =
depth R . If Q 3 ⊂ Q 1 + Q 2 then by Lemma 1.3, Theorem 5.6 and Lemma 5.7 we have
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sdepth R � min

{
depth S/(Q 2 ∩ Q 3),

⌈
dim(S/Q 1) + dim(S/(Q 1 + Q 3))

2

⌉}

� 1 + min
{

dim S/(Q 2 + Q 3),dim S/(Q 1 + Q 3)
}

= depth R

from the above exact sequence and a similar one. Thus we may suppose that Q 1 + Q 2, Q 2 + Q 3,
Q 1 + Q 3 have dimension � 1. Then from the exact sequence

0 → S/(Q 1 + Q 2) ∩ (Q 1 + Q 3) → S/(Q 1 + Q 2) ⊕ S/(Q 1 + Q 3) → S/(Q 1 + Q 2 + Q 3) → 0

we get by Depth Lemma depth S/(Q 1 + Q 2) ∩ (Q 1 + Q 3) = 1. Renumbering Q i we may suppose that
dim(Q 2 + Q 3) � max{dim(Q 1 + Q 3),dim(Q 2 + Q 1)}. Using Proposition 5.8 we have

sdepth R � min

{
sdepth S/Q 2 ∩ Q 3,

⌈
dim(S/(Q 1 + Q 2))

2

⌉
+

⌈
dim(S/(Q 1 + Q 3))

2

⌉}
.

We may suppose that sdepth R < dim S/Q i because otherwise sdepth R � dim S/Q i � depth R . Thus
using Theorem 1.5 we get

sdepth R � min

{⌈
dim S/Q 3 + dim S/(Q 2 + Q 3)

2

⌉
,

⌈
dim(S/(Q 1 + Q 2))

2

⌉
+

⌈
dim(S/(Q 1 + Q 3))

2

⌉}
.

If Q 1 �⊂ √
Q 3 then dim S/Q 3 > dim S/(Q 1 + Q 3) and we get

dim S/Q 3 + dim S/(Q 2 + Q 3) > dim
(

S/(Q 1 + Q 2)
) + dim

(
S/(Q 1 + Q 3)

)
because dim S/(Q 2 + Q 3) is maxim by our choice. It follows that

sdepth R �
⌈

dim(S/(Q 1 + Q 2))

2

⌉
+

⌈
dim(S/(Q 1 + Q 3))

2

⌉
� 2.

But from the first above exact sequence we get depth R = 2 with Depth Lemma, that is sdepth R �
depth R .

If Q 1 �⊂ √
Q 2 we note that dim S/Q 2 + dim S/(Q 2 + Q 3) > dim(S/(Q 1 + Q 2))+ dim(S/(Q 1 + Q 3))

and we proceed similarly as above with Q 2 instead Q 3. Note also that if Q 1 ⊂ √
Q 2 and Q 1 ⊂√

Q 3 we get dim S/(Q 2 + Q 3) � dim S/(Q 2 + Q 1) = dim S/Q 2, respectively dim S/(Q 2 + Q 3) �
dim S/(Q 3 + Q 1) = dim S/Q 3. Thus Q 1 ⊂ √

Q 3 = √
Q 2 and it follows sdepth R � dim S/Q 2, which

is a contradiction. �
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