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Introduction

Let K be a field and S = K[xq, ..., X;] be the polynomial ring over K in n variables and M a finitely
generated multigraded (i.e. Z"-graded) S-module. Given z € M a homogeneous element in M and
Z C{x1,...,%y}, let zK[Z] C M be the linear K-subspace of all elements of the form zf, f € K[Z].
This subspace is called Stanley space of dimension |Z|, if zK[Z] is a free K[Z]-module. A Stanley
decomposition of M is a presentation of the K-vector space M as a finite direct sum of Stanley
spaces D: M = @L] ziK[Z;]. Set sdepthD = min{|Z;|: i=1,...,r}. The number

sdepth(M) := max{sdepth(D): D is a Stanley decomposition of M }

is called the Stanley depth of M. This is a combinatorial invariant which has some common properties
with the homological invariant depth. Stanley conjectured (see [17]) that sdepth M > depth M, but this
conjecture is still open for a long time in spite of some results obtained mainly for n <5 (see [1,16,8,
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2,12,13]). An algorithm to compute the Stanley depth is given in [9] and was used here to find several
examples. Very important in our computations were the results from [3,6,15].
Let Q, Q' be two monomial primary ideals such that dimS/(Q + Q') = 0. Then

sdepthS/(Q N Q') < max{min{dim(s/q’), [ww } min{dim(s/q)’ [dim(;/Q/)”}’

and the bound is reached when Q, Q' are non-zero irreducible monomial ideals (see Proposition 2.2,
or more general in Corollary 2.4), [%1 being the smallest integer >a/2, a € Q.
Let Q1, Q2, Q3 be three non-zero irreducible monomial ideals of S. If dimS/(Q1 + Q2) =0 then

sdepth(Q1 N Q2) > [dimG/QnW N ( dim(S/Qz)—‘

2 2
(see Lemma 4.3, or more general in Theorem 4.5). In this case, our bound is better than the bound

given by [10] and [11] (see Remark 4.2). Using these results we show that sdepth(Qi N Q3) >
depth(Q1 N Q2), and

sdepthS/(Q1 N Q2N Q3) >depthS/(Q1N Q2N Q3),
that is Stanley’s Conjecture holds for Q1 N Q2 and S/(Q1 N Q2 N Q3) (see Theorems 5.6, 5.9).
1. A lower bound for Stanley’s depth of some cycle modules

We start with few simple lemmas which we include for the completeness of our paper.

Lemma 1.1. Let Q be a monomial primary idealin S = K[x1, ..., Xn]. Suppose that /Q = (x1, ..., X;) where
1 < r < n, Then there exists a Stanley decomposition

S/Q :@UK[Xr+]’~-7xn]’
where the sum runs on monomials u € K[x1, ..., %]\ (Q NK[X1, ..., X]).

Proof. Given u,v € K[x1,...,x]\(Q NK[x1,...,x-]) and h, g € K[Xy41, ..., xn] with uh = vg then we
get u =v, g = h. Thus the given sum is direct. Note that there exist just a finite number of monomials
in K[x1,...,x]1\ (Q NK[x1,...,%]). Let 0#« € (S\ Q) be a monomial. Then o = uf, where f €
K[Xr41,...,xn] and u € K[x1,...,xr]. Since o ¢ Q we have u ¢ Q. Thus S/Q C G uK[Xr+1,...,Xnl,
the other inclusion being trivial. O

Lemma 1.2. Let Q be a monomial primary ideal in S = K[xq,...,Xy]. Then sdepthS/Q =dimS/Q =
depthS/Q.

Proof. Let dimS/Q =n —r for some 0 <r < n. We have dimS/Q > sdepthS/Q by [1, Theorem 2.4].
Renumbering variables we may suppose that «/Q = (x1, ..., X;). Using the above lemma we get the
converse inequality. As S/Q is Cohen Macaulay it follows dimS/Q = depth S/Q, which is enough. O

Lemma 1.3. Let I, ] be two monomial ideals of S = K[x1, ..., xn]. Then

sdepth(S/(I'N J)) > max{min{sdepth(S/I), sdepth(I/(I N ]))},
min{sdepth(S/ ), sdepth(J/(I N ]))}}.
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Proof. Consider the following exact sequence of S-modules:
0—I1/INnJ)—S/ANnJ)—S/I—0.

By [14, Lemma 2.2], we have

sdepth(S/(I'N J)) = min{sdepth(S/I), sdepth(I/(IN ]))}. (1
Similarly, we get

sdepth(S/(I'N J)) > min{sdepth(S/J), sdepth(J/(IN ]))}. (2)
The proof ends using (1) and (2). O

Proposition 1.4. Let Q, Q' be two monomial primary ideals in S = K[x1, ..., x,] with different associated
prime ideals. Suppose that »/Q = (X1, ...,Xt),~/ Q' = (Xr4+1, ..., Xp) forsomeintegerst,r withO <r <t <n.
Then

sdepth(S/(Q N Q"))
> max{mvin{r, sdepth(Q' N K[X¢41, ..., Xp]), sdepth((Q: v) N K[Xe41, ..., Xa]) },
min{n — t, sdepth(Q N K[x1,...,x]), sdepth((Q : w) N K[x1, ..., xr])}},
w
where v, w run in the set of monomials containing only variables from {X; 41, ..., %}, w¢ Q,v ¢ Q’.

Proof. If Q, or Q’ is zero then the inequality holds trivially. If r =0 then Q N K[xq,...,%] =
Q NK =0, and the inequality is clear. A similar case is t =n. Thus we may suppose 1 <r <t <n.
Applying Lemma 1.3 it is enough to show that

sdepth(Q'/(Q N Q")) > min{sdepth(Q' N K[X¢11,...Xx]), sdepth((Q": v) N K[Xcs1,...xa])},

where v is a monomial of K[xr11,...,%,]1\ (Q N Q’). We have a canonical injective map

Q'/(QnQ)—s/Q.

By Lemma 1.1 we get

Q'/(enQ)=0Q'n (EBuK[xm, . .,xn]) =@P(Q' NuKixes1..... xa).
where u runs in the monomials of K[xq,...,x:]\ Q. Here
Q NuK[Xe41,.... X =u(Q N K[Xet1, ..., x]) ifueKlxq,...,x]
and

Q NuK[Xe41, ... X1 =u((Q": u) NK[Xes1, ..., %n) ifu ¢ Klxq,...,x].
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IfueQ’ then Q':u=S. We have

Q'/(QNQ) = (Pu(Q NKixis1. .. xa]) ) @ (D 2K xes1. . a1
® (@ uv((Q':v)N K[xtH,...,xn])),

where the sum runs for all monomials u € (K[x1,...,%]\ Q), z€ Q"\ Q and v € K[Xr41,...,X¢],
v¢ Q’U Q. Now it is enough to apply [14, Lemma 2.2] to get the above inequality. O

Theorem 1.5. Let Q and Q' be two irreducible monomial ideals of S. Then

sdepths S/(Q N Q') > max{min{dim(S/Q’), "dim(S/Q) +dim(S/(Q + Q,))—H,

2

dim(S/Q’) +dim(S/(Q + Q/))—‘ } }
5 .

min{dim(S/Q), ’V

Proof. If the associated prime ideals of Q,Q’ are the same then the above inequality says that
sdepthg S/(Q N Q') > dimS/Q, which follows from Lemma 1.2. Thus we may suppose that the
associated prime ideals of Q, Q' are different. We may suppose that Q is generated in variables
{x1,....x} and Q’ is generated in variables {x,y1,...,xp} for some integers 0 <r <t < p <n. Since
dim(S/Q)=n—t, dim(S/Q")=n—p +r and dim(S/(Q + Q’)) =n — p we get

. {p—tJ _ [(n—t)+(n—p)"‘ _ [dim(S/Q)erim(S/(Q +Q’))"

2 2 2

L%J being the biggest integer < a/2, a € Q. Similarly, we have

LrJ (dim(S/Q’) +dim(S/(Q + Q’))"‘

n—p+r—|-|= .

2 2

On the other hand by [6], and [15, Theorem 2.4] sdepth(Q' N K[Xt+1,..., %)) =n —t — LPT_tJ and
sdepth(Q N K[X1,..., X, Xp41,...,Xp]) =N —p+T1— L%J. In fact, the quoted result says in particular
that sdepth of each irreducible ideal L depends only on the number of variables of the ring and
the number of variables generating L (a description of irreducible monomial ideals is given in [18]).
Since (Q’:v) N K[X¢41,...,Xn] is still an irreducible ideal generated by the same variables as Q' we
conclude that

sdepth((Q": v) N K[X¢41, ..., Xp]) = sdepth(Q' N K[Xe41, . ..., Xnl),

v ¢ Q' being any monomial. Similarly,

sdepth((Q : w) NKI[X1,..., X, Xp41, ..., Xn]) = sdepth(Q NK[x1,... X, Xpi1, ..., Xn]).

It follows that our inequality holds if p =n by Proposition 1.4.
Set S"=K[x1,...,x,1,q=Q NS, ¢ =Q'NS". As above (case p =n) we get

sdepthy S'/(qNq) > max{min{dim(s//q’), ’le%w—‘ } min{dim(S’/q), ’lem(fqu/)—‘ ”

ol 25 < ]}
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Using [9, Lemma 3.6], we have

sdepth(S/(Q N Q")) = sdepths(S/(qNq’)S) =n— p + sdepthg (S'/(qaNq')).

It follows that
, . p—t . r
sdepthg(S/(Q N Q")) =n—p ~|—max{mm=r, IVT—‘ }, mln{p —t, (5—‘ H

coufoufe s 5 o )
| R

2. An upper bound for Stanley’s depth of some cycle modules

which is enough. O

Let Q, Q' be two monomial primary ideals of S. Suppose that Q is generated in variables
{x1,...,x} and Q’ is generated in variables {x;11,...,x,} for some integers 1 <r <t <n. Thus the
prime ideals associated to Q N Q' have dimension > 1 and it follows depth(S/(Q N Q’)) > 1. Then
sdepth(S/(Q N'Q")) =1 by [5, Corollary 1.6}, or [7, Theorem 1.4]. Let D: S/(Q N Q") = Pi_; uiK[Zi]
be a Stanley decomposition of S/(Q N Q') with sdepthD = sdepth(S/(Q N Q")). Thus |Z;| > 1 for
all i. Renumbering (u;, Z;) we may suppose that 1 € u;K[Z1], so u; = 1. Note that Z; cannot have
mixed variables from {x1,...,%} and {X;y1,...,%;} because otherwise u;K[Z;] will be not a free
K[Z;]-module. As | Z1 |> 1 we may have either Z1 C {x1,...,xr} or Z; C {Xt41,...,Xn}.

Lemma 2.1. Suppose Z C {1, ..., Xr}. Then sdepth(D) < min{r, ["T*t}}.

Proof. Clearly sdepth(D) <| Z1 |< 1. Let a € N be such that x{ € Q' for all t <i<n. Let T =
K[yt41,....yn]l and ¢ : T — S be the K-morphism given by y; — x{. The composition map ¢ : T —
S — §/(Q N Q") is injective. Note also that we may consider Q" N K[x¢41,...,X%,]1C S/(Q NQ’) since
Q N K[Xt+1, ..., %] =0. We have

Gertr oY) =¥ (Q N KX, xal) =@ ¥ (uKIZN Q' N K Xeg1s -, Xal).

If u;K[Zj1N Q' N K[X41,...,%]1 # 0 then uj € K[X¢41,...,%n]. Also we have Zj C {X¢41,...,Xn},
otherwise u;K[Z;] is not free over K[Z;]. Moreover, if wq(qu[Zj] N Q' NK[Xt41,---,Xn]) # 0 then

b1
t+1 °*

Denote ¢; = [%1 when x; € Z;. We get

uj=x .xg”, bi e Nis such that if x; ¢ Zj, t <i <n, then a | b;, let us say b; = ac; for some c; e N.

Y (WGKIZN Q N K X, ..o xal) = Vi .y KLV,

where V; ={y;: t <i<n,x; € Zj}. Thus 1//*1(qu[Zj] N Q' N K[Xt41,...,Xy]) is a Stanley space
of T and so D induces a Stanley decomposition D’ of (¥¢t+1,...,¥yn) such that sdepth(D) <
sdepth(D’) < sdepth(y¢41, ..., yn) because | Zj |=| V; |. Consequently sdepth(D) < [”T’t] by [3] and
so sdepth(D) < min{r, [}

Note also that if t =n, or r =0 then the same proof works; so sdepthS/(Q N Q’) =0, which is
clear because depthS/(Q N Q’) =0 (see [5, Corollary 1.6]). O



2948 D. Popescu, M.I. Qureshi / Journal of Algebra 323 (2010) 2943-2959

Proposition 2.2. Let Q, Q' be two non-zero monomial primary ideals of S with different associated prime
ideals. Suppose that dim(S/(Q + Q’)) = 0. Then

sdepths(S/(Q N Q"))

< max{min[dim(S/Q/), [w—‘ } min{dim(S/Q), ’lem%/@)—‘”

Proof. If one of Q, Q’ is of dimension zero then depth(S/(Q N Q’)) =0 and so by [5, Corol-
lary 1.6] (or [7, Theorem 1.4]) sdepth(S/(Q N Q’)) =0, that is the inequality holds trivially. Thus
we may suppose after renumbering of variables that Q is generated in variables {xi,...,x;} and
Q’ is generated in variables {Xr41,...,xp} for some integers t,r,p with 1 <r<t<p<n, or
0 <r <t < n. By hypothesis we have p =n. Let D be the Stanley decomposition of S/(Q N Q")
such that sdepth(D) = sdepth(S/(Q N Q’)). Let Z; be defined as in Lemma 2.1, that is K[Z1] is the

Stanley space corresponding to 1. If Z; C {xq, ..., x;} then by Lemma 2.1,

sdepth(D) < min{r, ’VHT_FH = min{dim(S/Q’), ’Vw—‘ }
If Zy C {Xt+1,...,Xn} we get analogously

sdepth(D) < min{n —t, ’7%—“ = min{dim(S/Q), "dlm%/Q’)" }

which shows our inequality. O

Theorem 2.3. Let Q and Q' be two non-zero monomial primary ideals of S with different associated prime
ideals. Then

sdepths S/(Q N Q') < max{min{dim(s/Q/)’ (dim(S/Q) +dim(5/(Q +Q ))—H’

2
. dim(S/Q’ + dim(S +Q’
mm{dlm(S/Q),( (S/Q 2( /(Q Q)))—H}’
Proof. As in the proof of Proposition 2.2 we may suppose that Q is generated in variables {x1, ..., X}
and Q’ is generated in variables {x;;1,...,xp} for some integers 1<r<t<p<n,or0<r<t<n

but now we have not in general p =n. Set S’ =K|[x1,...,x,], q=Q NS, ¢ =Q’'NS’. Using Proposi-
tion 2.2 we get

By [9, Lemma 3.6] we have

sdepths(S/(Q N Q")) = sdepths(S/(qNq’)S) =n— p + sdepthg (S'/(qNq')).

As in the proof of Theorem 1.5, it follows that
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, . p—t . r
sdepthg(S/(Q N Q")) <n— p+ max{minqr, - ,min{p —t, 3

—t
:max(min{n—p—i—r,n—t— L%“,min{n—t,n—p—i—r— \é“}

Corollary 2.4. Let Q and Q' be two non-zero monomial irreducible ideals of S with different associated prime
ideals. Then

which is enough. O

sdepths S/(Q N Q") = max{min{dim(S/Q’), Pim(s/Q) +dim(S/(Q + Q,))—H,

2

dim(S/Q") +dim(S/(Q + Q’))—‘ ] ’
5 .

min{dim(S/Q),’r

For the proof apply Theorem 1.5 and Theorem 2.3.

Corollary 2.5. Let P and P’ be two different non-zero monomial prime ideals of S, which are not included one
in the other. Then

sdepthg S/(P NP)= max{min{dim(S/P’), "dim(S/P) +dim(S/(P + P1) —‘ }

2

dim(S/P") + dim(S/(P + P/))W } }
5 .

min{dim(S/P), ’7

Proof. For the proof apply Corollary 2.4. O

Corollary 2.6. Let A be a simplicial complex in n vertices with only two different facets F, F’. Then
[F|+|FNF'| . |F’| 4+ |F N F'|
e minj |F|, — .

Let S=K[x1,...,Xs], Q = (x,X3, X3, X3, X1X2X4, X1X3X4), Q' = (X3, X5, Xg). By our Theorem 2.3 we
get

sdepth K[A] = max{min{ |F’

3. Anillustration

sdepthS/(Q N Q') < max{min{B, ’é—‘ } min{z, ’é—‘ ” =max{1,2} =2.

On the other hand, we claim that I = ((Q : w) N K[x1, X2, X3]) = (x2, X3, X3, X1x2, X1x3) for w = x4 and
sdepthl =1 < 2 =sdepth(Q N K[x1, X2, x3]). Thus our Proposition 1.4 gives

sdepthS/(Q N Q') > max{min{?», [é—‘ } min{Z, (3—‘ 1 ” =1.

In this section, we will show that sdepth(S/(Q N Q")) =1.
First we prove our claim. Suppose that there exists a Stanley decomposition D of I with
sdepthD > 2. Among the Stanley spaces of D we have five important X%K[Z]]. x%K[Zz], ng[Z3],
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x1X2K[Z4], x1x3K[Z5] for some subsets Z; C {x1, X2, X3} with |Z;| > 2. If Z4 = {x1, X2, x3} and Z5 con-
tains x; then the last two Stanley spaces will have a non-zero intersection and if Z; contains x, then
the first and the fourth Stanley space will have non-zero intersection. Now if x; ¢ Z5 and x; ¢ Z; then
the first and the last space will intersect. Suppose that Z4 = {x1, x2}. Then xy ¢ Z; (resp. x1 ¢ Z,) be-
cause otherwise the intersection of x1xy K[Z4] with the first Stanley space (resp. the second one) will
be again non-zero. As |Z1|, |Z2| > 2 we get Z1 = {x1,x3}, Z2 = {X2, x3}. But x; ¢ Z3 because otherwise
the first and the third Stanley space will contain x%x%, which is impossible. Similarly, x ¢ Z3, which
contradicts |Z3| > 2. The case Zs = {x1, x3} gives a similar contradiction.

Now suppose that Z4 = {x1, x3}. If Z5 D {X1, x2} we see that the intersection of the last two Stanley
spaces from the above five, contains x%xzxg and if Zs = {x, x3} we see that the intersection of the
same Stanley spaces contains xx;x3. Contradiction (we saw that Zs5 # {x1, x3})! Hence sdepthD < 1
and so sdepthI =1 using [5].

Next we show that sdepthS/(Q N Q') = 1. Suppose that D’ is a Stanley decomposition of
$/(Q NQ’) such that sdepthS/(Q N Q') =2. We claim that D’ has the form

s/(QNQ) = (Pvkixs.xl) @ (@u,«[z,-])
i=1

for some monomials v € (K[X1,...,X4]\ Q), u; € (Q NK[x1,...,X4]) and Z; C {x1, X2, X3}. Indeed, let
v € (K[x1,...,%x4]\ Q). Then vxs, vxg belong to some Stanley spaces of 7, let us say uK[Z], u'K[Z'].
The presence of x5 in u or Z implies that Z does not contain any x;, 1 <i < 3, otherwise uK[Z] will
be not free over K[Z]. Thus Z C {xs5,Xg}. As |Z| > 2 we get Z = {x5,xg} and similarly Z’ = {xs, xg}.
Thus vxsxg € (uK[Z]Nu'K[Z']) and it follows that u =u’, Z = Z’ because the sum in D’ is direct. It
follows that u|vxs, u|vxg and so u|v, that is v =uf, f being a monomial in xs, xg. As v € K[x1, ..., X4]
we get f=1and sou=v.

A monomial w € (Q \ Q') is not a multiple of x5, xg, because otherwise w € Q’. Suppose w
belongs to a Stanley space uK[Z] of D'. If u € (K[X1,...,X4] \ Q) then as above D’ has also a
Stanley space uK|[xs,xg] and both spaces contains u. This is false since the sum is direct. Thus
ue(QNK[xq,...,xX4]), which shows our claim.

Hence D’ induces two Stanley decompositions S/Q = @VE(K[M ’’’’ xune) VKixs, x6], Q/(Q N Q)=
@le u;K[Z;], where u; € (Q N K[x1,...,X4]) and Z; C {x1, x2, X3}. Then we get the following Stanley
decompositions

N

Q NK[xq,...,x3] = @ uiK[z, I= @ (ui/xa)K(Zi).

i=1, uj¢(x4) i=1, x4lu;
As 2 < min; |Z;| we get sdepth[ > 2. Contradiction!
4. A lower bound for Stanley’s depth of some ideals
Let Q, Q' be two non-zero irreducible monomial ideals of S such that v/Q = (x1,...,%), ~/Q ' =
(Xr41,...,Xp) for some integers r,t,p with 1<r<t<p<nor0=r<t<p<nor1<r<t=

p<n

Lemma 4.1. Suppose that p =n, t =r. Then

sdepth(Q N Q") > ’7%-‘ + ’V%-‘ >n/2.

Proof. It follows 1 <r < p.Let f € QNK[X1,...,%], €€ Q'NK[Xr41,...,X,] and M(T) be the mono-
mials from an ideal T. The correspondence (f, g) — fg defines a map ¢ : M(Q N K[xq,...,%]) X
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M@Q' N K[X41,...,X%]) = M(Q N Q’), which is injective. If w is a monomial of Q N Q’, let us

say w = fg for some monomials f € K[x1,...,xr], g € K[Xr+1,...,%;] then fg€ Q and so f € Q
because the variables x;, i > r are regular on S/Q. Similarly, g € Q' and so w = ¢((f, g)), that is ¢
is surjective. Let D be a Stanley decomposition of Q N K[xq, ..., X],

D: QNK[X,...,%]= @u,-lqz,-]
i=1

with sdepthD = sdepth(Q N K[X1,...,x]) and D’ a Stanley decomposition of Q" N K[Xy41, ..., Xn],
e
D' Q' NK[xi1.....%1 =D viKIT)]
j=1
with sdepthD’ = sdepth(Q’ N K[X+1, ..., %n]). They induce a Stanley decomposition
e S
D": QNQ' =P PuiviKiziuT)]
j=1 i=1
because of the bijection ¢. Thus

sdepth(Q N Q") = sdepthD” = min(|Z;| 4 |T;|) > min|Z;| + min|T}]|
i,j 1 J

= sdepth D + sdepth D’
= sdepth(Q N K[x1, ..., x]) + sdepth(Q" N K[xr11, ..., Xa])

—(r r +(n—-r n-r | + n-r >n/2 O

B 2 2 T2 2 |7
Remark 4.2. Suppose that n =8, r = 1. Then by the above lemma we get sdepth(Q N Q') >
11+ 121=5. Since |G(Q N Q")| =7 we get by [10,11] the same lower bound sdepth(Q N Q") >

8 — L%J =5.1f n=38, r=2 then by [10,11] we have sdepth(Q N Q') > 8 — L%J =2 but our previous
lemma gives sdepth(Q N Q') > [%] + f%] =4.

Lemma 4.3. Suppose that p = n. Then
sdepth(Q N Q') > [1—‘ + "n_—t"‘
2 2
Proof. We show that
QNQ'=(QNQ ' NK[Xr41,....%])S
® (@w(((Q NQ'):w)NKIX1, ..., X, Xet1, ...,xn])>,

w

where w runs in the monomials of K[Xr1,...,%]\ (Q N Q’). Indeed, a monomial h of S has the
form h = fg for some monomials f € K[X41,...,%], & € K[X1,..., X, Xt+1,...,Xn]. Since Q, Q' are
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irreducible we see that h € Q N Q' either when f is a multiple of a minimal generator of Q N Q' N
K[Xrs1,...,%],0r f¢(QNQ " NK[Xr41,...,%]) and then

he f(((QNQ): f)NKIX1, ..., X, Xeq1, - ., Xn).

Let D be a Stanley decomposition of (Q N Q' N K[xr41,...,%])S,
N
D: (QNQ NKxry1,.... x])S = PuiK(Zi]
i=1

with sdepthD = sdepth(Q N Q' N K[Xr4+1,...,%])S and for all w € (K[Xr+1,...,x]\ (Q N Q")), let
Dy be a Stanley decomposition of ((Q N Q) : w) N K[X1, ..., Xr, Xt+1, -, Xn],

Dw: ((QNQ):wW)NKIX1, ..o Xe X1 Xl = ED €D v K[ Twj)
W

with sdepth Dy, = sdepth(((Q N Q") : W) NK[X1, ..., Xr, Xex1, ..., Xn]). Since K[X41,...,%]1\(Q NQ")
contains just a finite set of monomials we get a Stanley decomposition of Q N Q’,

S
D: QNQ' = (ED uiK[Z,-]) ® (@@wijk[rwj]),
i=1 woj
where w runs in the monomials of K[Xr41,...,%]\ (Q N Q’). Then
sdepthD’ = mmi/n{sdepth D, sdepth Dy, }
= mmi/n{sdepth(Q NQ ' NK[Xr41,....%])S,

sdepth(((Q N Q") : w) NKI[X1, ..., X, Xes1, ... Xn]) }.

But ((Q N Q") :w)NKI[x1,...,Xr, Xt41, - .., Xn] is still an intersection of two irreducible ideals and

sdepth(((Q N Q") : w) NK[X1, ..., X, Xes1, ... Xn]) = ’Vg—‘ + "nT—t"‘

by Lemma 4.1. We have sdepth(Q N Q' N K[Xr41,...,%]) > 1 and so
sdepth(Q N Q' NK[Xr41,....X])S=1+n—t+r
by [9, Lemma 3.6]. Thus

sdepth(Q N Q") > sdepthD’ > [%—‘ + ’VHT_F‘

Note that the proof goes even when 0 <r <t <n (anyway sdepthQ N Q' >1ifn=t,r=0). O

Lemma 4.4.

sdepth(Q NQ")=n—p+ ’V%—‘ + ’Vp__t—‘
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Proof. As usual we see that there are now (n — p) free variables and it is enough to apply [9, Lemma
3.6] and Lemma 4.3. O

Theorem 4.5. Let Q and Q' be two non-zero irreducible monomial ideals of S. Then

sdepths(Q N Q') >dim(S/(Q + Q') + [d‘mG/Q ) —dim(S/(Q +Q ))W

2

. [dim(S/Q) —dim(S/(Q + Q’))—‘

2
[dim(S/Q’) + dim(S/Q)—‘
> .
2
Proof. After renumbering of variables, we may suppose as above that +/Q = (x1,...,%), ~/Q' =
(Xr41,...,Xp) for some integers r,t,p with 1<r<t<p<n orO0=r<t<p<n or1<rg

t=p<n Ifn=p, r=0 then /Q C +/Q’ and the inequality is trivial. It is enough to ap-
ply Lemma 4.4 because n — p = dim(S/(Q + Q")), r =dim(5/Q’) — dim(S/(Q + Q")), p —t =
dim(S/Q) —dim(S/(Q +Q")). O

Remark 4.6. If Q, Q’ are non-zero irreducible monomial ideals of S with «/Q =+/Q’ then we have
sdepthg(Q N Q') >1+dimS/Q.

Example 4.7. Let S = K[x1,x2], Q = (1), Q' = (x%,xz). We have

sdepth(Q N Q') > [dim(S/Q )+dim(S/Q)"‘ _ [1 HW

2 2

by the above theorem. As Q N Q' is not a principle ideal its Stanley depth is < 2. Thus
sdepth(Q NQ") =1.

Example 4.8. Let S = K[X1, X2, X3, X4, X5], Q = (x1,X2,%3), Q' = (x3,X4,5). As dim(5/(Q + Q")) =0,
dimS/Q =2 and dimS/Q’ =2 we get

sdepth(Q N Q') > [dim<S/Q’>2+dim<5/Q)w _ [z;zw ,

by the above theorem. Note also that

sdepth(Q N Q" N K[X1, X2, X4, X5]) = sdepth(x1x4, X1X5, X2X4, X2X5) K[X1, X2, X4, X5] = 3,

and

sdepth(((Q N Q") :x3) N K[x1, X2, X4, X5]) = sdepth((x1, X2)K[x1, X2, X4, X5])

S

by [15]. But sdepth(Q N Q') > 3 because of the following Stanley decomposition



2954 D. Popescu, M.I. Qureshi / Journal of Algebra 323 (2010) 2943-2959

Q N Q" =x1x4K[X1, X4, X5]1 ® X1X5K[X1, X2, X5] D X2X4K[X1, X2, X4] D X2X5K[X2, X4, X5]
® X3K[x3, X4, X5] ® X2x3K[X2, X3, X4] © x1X3K[X1, X2, X3] © X1X3X4 K[X1, X2, X4, X5]
@ x1X3X5K[X1, X3, X5] © X2X3X5K[X2, X3, X4, X5] © X1X2X4X5K[X1, X2, X4, X5]
® X1x3xaK[X1, X3, X4, X5] ® X1%2X3%5 K [X1, X2, X3, X5] ® X1X2%3X4 K [X1, X2, X3, Xa, X5].
5. Applications

Let I C S be a non-zero monomial ideal. A. Rauf presented in [14] the following:

Question 5.1. Does it hold the inequality

sdepth > 1 + sdepth S/I?
The importance of this question is given by the following:

Proposition 5.2. Suppose that Stanley’s Conjecture holds for cyclic S-modules and the above question has a
positive answer for all monomial ideals of S. Then Stanley’s Conjecture holds for all monomial ideals of S.

For the proof note that sdepthl > 1+ sdepthS/I > 1+ depth S/l =depth|I.

Remark 5.3. In [12] it is proved that Stanley’s Conjecture holds for all multigraded cycle modules over
S =K[xq,...,xs5]. If the above question has a positive answer then Stanley’s Conjecture holds for all
monomial ideals of S. Actually this is true for all square free monomial ideals of S as [13] shows.

We show that the above question holds for the intersection of two non-zero irreducible monomial
ideals.

Proposition 5.4. Question 5.1 has a positive answer for intersections of two non-zero irreducible monomial
ideals.

Proof. First suppose that Q, Q' have different associated prime ideals. After renumbering of variables
we may suppose as above that «/Q = (X1,...,X), v/ Q' = (Xr41,...,Xp) for some integers r, t, p with
I1<r<t<p<norO0=r<t<p<norl<r<t=p<n. Then

sdepth(Q NQ")>n—p+ ’7%—‘ + IVPT_F‘

by Lemma 4.4. Note that

sdepth(S/(Q N Q’)) =n—-p+ max{min{r, [PT—‘ } minip —t, (;‘ H
by Corollary 2.4. Thus

r

1+ sdepth(S/(Q NQ")) <n—p+ [2

—‘ + PT_F‘ < sdepth(Q N Q).

Finally, if Q, Q’ have the same associated prime ideal then sdepth(Q N Q') > 1+ dimS/Q by Re-
mark 4.6 and so sdepth(Q N Q’) > 1+ sdepthS/(Q NQ"). O
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Next we will show that Stanley’s Conjecture holds for intersections of two primary monomial
ideals. We start with a simple lemma.

Lemma 5.5. Let Q, Q' be two primary ideals in S = K[x1, ..., X,]. Suppose «/Q = (X1, ...,%) and /Q =
(Xr4+1, ..., Xp) forintegers 0 < <t < p < n. Then sdepth(S/(Q N Q")) > depth(S/(Q N Q")), that is Stan-
ley’s Conjecture holds for S/(Q N Q).

Proof. If either r =0, or t = p then depthS/(Q NQ’) <n—p < sdepth(S/(Q NQ")) by [9, Lemma 3.6].

Now suppose that r >0, t < p and let S’ =K[x1,...,x,] and q=Q NS’, ¢ = Q' N S’. Consider the
following exact sequence of S’-modules

0—5/(qng)—S'/q®S'/qd — S'/(a+q) — 0.
By Lemma 1.2
depth(S'/q @ S'/q') = min{depth(S’/q), depth(S'/q’)}

= min{dim(S’/q), dim(S'/q’) }

=min{r,p—t}>1>0

= depth(S'/(q+q')).
Thus by Depth Lemma (see e.g. [4])

depth(S'/qNq') = depth(S'/(g+¢')) +1=1.
But sdepth(S’/(qNq’)) > 1 by [5, Corollary 1.6] and so
sdepth(S/(Q N Q")) =sdepth(S'/(qNq))+n—p=1+n—p

=n—p+depth(S'/(qNq'))
= depth(S/(Q N Q"))

by [9, Lemma 3.6]. O

Theorem 5.6. Let Q, Q' be two non-zero irreducible ideals of S. Then sdepth(Q N Q') > depth(Q N Q"),
that is Stanley’s Conjecture holds for Q N Q.

Proof. By Proposition 5.4, Question 5.1 has a positive answer, so by the proof of Proposition 5.2 it is
enough to know that Stanley’s Conjecture holds for S/(Q N Q). This is given by the above lemma. O

Next we consider the cycle module given by an irredundant intersection of 3 irreducible ideals.

Lemma 5.7. Let Q1, Q2, Q3 be three non-zero irreducible monomial ideals of S = K[x1, ..., xp]. Then

sdepth((Q2N Q3)/(Q1N Q2N Q3))
dim(5/(Q1 + Q2)) —dim(S5/(Q1+ Q2 + Q3))-‘

>dim(S/(Q1+ Q2+ Q3)) + [ 2
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2

- "dim(s/(Ql + Q) +dim(S/(Qq + Qa))—‘

n "dim(S/(Q1 + Q3)) —dim(5/(Q1 + Q2 + Q3))-‘

IfQ3 C Q1+ Qy then

dim(S dim(S
sdepth((Q2 N Q3)/(Q1 N Q2N Q3)) > [ IM(5/Q1) + dim($/(Q1 + Qﬂ.

2

Proof. Renumbering the variables we may assume that /Q; = (x1,...,%) and +/Q+ Q3 =
(Xr4+1,...,Xp), where 0<r<t<p<n. If t=p then /Q1+ Q2 =+/Q1+ Q3 and the inequality
is trivial by [9, Lemma 3.6]. Let S' = K[x1,...,xpl and g1 =Q1 NS, 2=Q2NS, g3 =Q3NS". We
have a canonical injective map (g2 N q3)/(q1 Nq2 N gq3) — S’'/q1. Now by Lemma 1.1, we have

S'/a1 = EPuKlxe1, ..., xp]

and so

(q2Ng3)/(q1Ngq2Nq3) = @((th Nq3) NuK[Xet1, ..., Xpl),
where u runs in the monomials of K[x1,...,x:]\ (q1 N K[x1,...,%]). If u € K[xq,...,%] then
(@2 N q3) NuK[Xey1, ..., xpl =u(q2 N g3 N K[Xe11, ... Xp])
and if u ¢ K[x1,...,x] then
(@2Nq3) NuK[Xes1, ..., xp1 =u(((@2Nq3) :u) N K[Xe41, ..., Xp]).
Since (q2 Nq3) : u is still an intersection of irreducible monomial ideals we get by Lemma 4.3 that

sdepth(((q2 N q3) : u) N K[Xet1, ..., Xp])

< [diml([xfﬂ,...,xp]/qzﬂK[xt_H,...,xp]"‘ n (dim]([xtﬂ,...,xp]/qgﬂK[xtH,...,xp]"‘
- 2 2 ’

Also we have

02/(q1 N a2) = Pu(a2 NKixes1, ..., %p]),

and it follows
/(a1 +42) = (S'/91)/(42/(@1 N 42)) = P u(Kxex1, ... Xp1/q2 N K Xey1, -, Xp]).
Thus dim S’/(q1 +q2) =dim K [xc41, ..., Xp1/q2 N K[X¢11, ..., xp] and similarly

dimS'/(q1 +q3) = dim K[xr11, - .., Xp1/q3 N K[Xe41, - - -, Xp].

Hence
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dim(S’ dim(s’
sdepth(<qmq3)/<q1mq2mq3))>[ me/ (q‘“’”)%[ im(s'/ (q‘“’”ﬂ

2 2
_ [dim(S/(Ql +Q2)) —dim(5/(Q1+ Q2 + QB))—‘
2
N "dim(s/(Ql +Q3)) —dim(S/(Q1 + Q2 + Q3))—‘
5 .

If Q3 C Q1+ Q2 then (g2 N¢q3) NKI[Xe+1, ..., Xpl =q3 N K[Xe41, ..., xp] and so

sdepthg/ (g2 N q3)/(q1 N g2 N q3) > sdepth((q2 N q3) N K[Xey1. ..., Xp])
ht(g3 N K[Xests - -
—pt { (g3 N K[Xe41 Xp])J

2
_ [p—t—i—dimK[xtH,...,xp]/qgﬂK[xH],...,xp]"
2
_ [dim(S’/m) +dim(S’/ (g +Q3))—‘
5 .

Now it is enough to apply [9, Lemma 3.6]. O

Proposition 5.8. Let Q1, Q2, Q3 be three non-zero irreducible ideals of S and R = S/Q1 N Q2 N Q3. Suppose
that dimS/(Q1 4+ Q2 + Q3) =0. Then

sdepthR > maX{min{sdepthS/(QZ " 03), [dim(S/(Q1 + Qz))-‘ N [dim(S/(Q1 + Q3))'H7

2 2
dim(S/(Q1 + Qz))—‘ + {dim(S/(Qz + Qs))”

2 2

dim(5/(Qs + Qz))—‘ N "dim(s/(Ql + Q3))—‘ }}
2 2 ’

min{sdepths/(Q1 NQ3), [

min{sdepthS/(Q1 N Qy), [

For the proof apply Lemma 1.3 and Lemma 5.7.

Theorem 5.9. Let Q1, Q2, Q3 be three non-zero irreducible ideals of S and R = S/(Q1 N Q2 N Q3). Then
sdepth R > depth R, that is Stanley’s Conjecture holds for R.

Proof. Applying [9, Lemma 3.6] we may reduce the problem to the case when

dimS/(Q1+ Q2+ Q3)=0.

If one of the Q; has dimension O then depthR =0 and there exists nothing to show. Assume that
all Q; have dimension > 0. If one of the Q; has dimension 1 then depthR =1 and by [5] (or [7]) we
get sdepth R > 1 = depth R. From now on we assume that all Q; have dimension > 1.

If Q1 + Q2 has dimension 0 and Q3 ¢ Q1 + Q> then from the exact sequence

0—-R—S/Q1®S/Q2NQ3—5/(Q1+Q2)N(Q1+ Q3)— 0,

we get depthR =1 by Depth Lemma and we may apply [5] (or [7]) to get as above sdepthR > 1=
depthR. If Q3 C Q1 + Q3 then by Lemma 1.3, Theorem 5.6 and Lemma 5.7 we have
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sdepth R > min{depthS/(Qz N Q). ’Vdim(S/Ql) +dim(S/(Q1 + Q3))-H

2
> 1+ min{dimS/(Q2 + Q3),dimS/(Q1 + Q3)}
=depthR

from the above exact sequence and a similar one. Thus we may suppose that Q1 + Q32, Q2 + Qs3,
Q1 + Q3 have dimension > 1. Then from the exact sequence

0—5S5/(Qi1+Q2)N(Q1+Q3)—>5/(Q1+Q2)®S/(Q1+Q3) > S/(Q1 +Q2+Q3)—0

we get by Depth Lemma depthS/(Q1 + Q2) N (Q1 + Q3) = 1. Renumbering Q; we may suppose that
dim(Q3 + Q3) > max{dim(Q1 + Q3),dim(Q2 + Q1)}. Using Proposition 5.8 we have

sdepth R > min{sdepth $/050 Q5. ’Vdim(s/(Ql + Qz))—‘ . [dim(s/(Ql + Q3))—H'

2 2

We may suppose that sdepthR < dimS/Q; because otherwise sdepthR > dimS/Q; > depthR. Thus
using Theorem 1.5 we get

2
"dim(S/(Q1 + Qz))—‘ N "dim(s/(Ql + Q3))-H

sdepthR > min{ [dim S/Q3+dimS/(Qy + Q3)—‘7

2 2

If Q1 ¢ +/Q3 then dimS/Q3 > dimS/(Q1 + Q3) and we get

dim S/Q3 +dim S/(Q2 + Q3) > dim(S/(Q1 + Q2)) +dim(S/(Q1 + Q3))

because dimS/(Q2 4+ Q3) is maxim by our choice. It follows that

= 2.

sdepth R > [dim(S/(Ql + Qz))_‘ N [dim(S/(Q1 + Q3))“

2 2

But from the first above exact sequence we get depth R =2 with Depth Lemma, that is sdepthR >
depth R.

If Q1 ¢ +/Q2 we note that dimS/Q3 +dimS/(Q2 + Q3) > dim(5/(Q1 + Q2)) +dim(S/(Q1 + Q3))
and we proceed similarly as above with Q, instead Q3. Note also that if Q; C +/Q2 and Q; C
Q3 we get dimS/(Qz + Q3) > dimS/(Qz + Q1) = dimS/Q,, respectively dimS/(Qz + Q3) >
dimS/(Q3 + Q1) =dimS/Q3. Thus Q1 C +/Q3 =+/Q> and it follows sdepthR > dimS/Q;, which
is a contradiction. O
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