期刊论文详细信息
| Canadian mathematical bulletin | |
| On Stanley Depths of Certain Monomial Factor Algebras | |
| Zhongming Tang1  | |
| [1] Department of Mathematics, Suzhou University, Suzhou 215006, PR~China | |
| 关键词: monomial ideal; size; Stanley depth; | |
| DOI : 10.4153/CMB-2015-001-x | |
| 学科分类:数学(综合) | |
| 来源: University of Toronto Press * Journals Division | |
PDF
|
|
【 摘 要 】
Let $S=K[x_1,ldots,x_n]$be the polynomialring in $n$-variables over a field $K$ and $I$ a monomial idealof $S$. According to one standard primary decomposition of $I$,we get a Stanley decomposition of the monomial factor algebra$S/I$.Using this Stanley decomposition, one can estimate the Stanleydepth of $S/I$. It is proved that${operatorname {sdepth}}_S(S/I)geq{operatorname {size}}_S(I)$. When $I$ is squarefree and ${operatorname {bigsize}}_S(I)leq 2$, the Stanley conjecture holdsfor$S/I$, i.e., ${operatorname {sdepth}}_S(S/I)geq{operatorname {depth}}_S(S/I)$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912050577139ZK.pdf | 14KB |
PDF