INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES | 卷:121 |
Energetic approach for a sliding inclusion accounting for plastic dissipation at the interface, application to phase nucleation | |
Article | |
Bluthe, Joffrey1  Weisz-Patrault, Daniel2  Ehrlacher, Alain1  | |
[1] Ecole Ponts ParisTech, CNRS, Lab Navier, 6 & 8 Ave Blaise Pascal, F-77455 Marne La Vallee, France | |
[2] Univ Paris Saclay, Ecole Polytech, CNRS, LMS, F-91128 Palaiseau, France | |
关键词: Phase transition; Plastic dissipation; Elastic energy; Energetic approach; Sliding inclusion; Eigenstrain; | |
DOI : 10.1016/j.ijsolstr.2017.05.023 | |
来源: Elsevier | |
【 摘 要 】
During solid-solid phase transitions, the eigenstrain introduced by the geometrical transformation in the newly formed phase is a significant issue. Indeed, it is responsible for very large elastic energy and dissipation at the continuum scale that have to be added to the total energy in order to determine if a phase transition can occur. The eigenstrain can cause sliding of the newly formed grain. In this paper, an analytical method coupled with numerical energetic optimization is derived to solve the problem of a two-dimensional circular elastic sliding inclusion accounting for plastic dissipation at the interface. Numerical calculations under plane stress assumption show that dissipation enables an effective decrease in the energy needed for the phase transformation to occur. (C) 2017 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_ijsolstr_2017_05_023.pdf | 680KB | download |