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a b s t r a c t 

During solid-solid phase transitions, the eigenstrain introduced by the geometrical transformation in the 

newly formed phase is a significant issue. Indeed, it is responsible for very large elastic energy and dis- 

sipation at the continuum scale that have to be added to the total energy in order to determine if a 

phase transition can occur. The eigenstrain can cause sliding of the newly formed grain. In this paper, 

an analytical method coupled with numerical energetic optimization is derived to solve the problem of a 

two-dimensional circular elastic sliding inclusion accounting for plastic dissipation at the interface. Nu- 

merical calculations under plane stress assumption show that dissipation enables an effective decrease in 

the energy needed for the phase transformation to occur. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Phase transitions are crucial for many applications. A general

trategy for modeling phase transitions consists in constructing a

ost function (or a global energy) by adding different energetic

ontributions and dissipated energies arising at different scale dur-

ng phase transition. Then a minimization over possible states (i.e.,

 global energy balance) is considered in order to determine if

hase nucleation is the most favorable option with respect to the

nergetic cost function as proposed for instance by Fischer and

eisner (1998) . 

Among the energetic contributions that should be considered,

ne of the most studied is the energy gain by the rearrangement

f the crystal lattice ( Müller et al., 2007 ). This contribution is as-

ociated to the free Gibbs energy variation between one phase and

he other. However, the geometrical transformation from the crys-

alline structure of the parent phase to the crystalline structure of

he product phase, amounts to impose, at the scale of continuum

echanics, an eigenstrain in the product phase. For instance within

he framework of steel well known orientation models proposed by

ain and Dunkirk (1924) ; Nishiyama (1934) ; Kurdjumow and Sachs

1930) may be used to quantify this eigenstrain. 

Thus, the free Gibbs energy variation between the parent phase

nd the product phase is not sufficient to evaluate if phase trans-

ormation may occur. Indeed, at the scale of continuum mechan-
∗ Corresponding author. 

E-mail addresses: bluthej@eleves.enpc.fr , bluejof@gmail.com (J. Bluthé). 

o  

ttp://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 

020-7683/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
cs, the newly formed phase nucleates with a certain size. The

eometrical transformation undergone in the inclusion is thus in-

ompatible with the presence of the surrounding matrix, and the

nclusion and the matrix will therefore experience elastic strains.

hase nucleation occurs if a lower total energy is reached. There-

ore, this elastic energy tends to reduce the possibility of phase

hanges because the energy gained at the atomic scale by the

odification of the crystal structure is compensated by the bulk

nergy at a larger scale. Thus, one needs to evaluate the elastic

nergy associated with the eigenstrain in order to correctly pre-

ict phase nucleation. For instance, within the framework of Zir-

onium phase transition, Hensl et al. (2015) include elastic energy

n the global free Gibbs energy. Usually the well-known inclusion

ethod proposed by Eshelby (1957) is used to evaluate the stored

lastic energy due to the eigenstrain. For instance ( Lambert-Perlade

t al., 2004 ) used the Eshelby inclusion method to model self-

ccommodation within the framework of austenite to bainite phase

ransition in steel alloys. Mura et al. (1976) proposed an exten-

ion of the Eshelby inclusion method for anisotropic materials and

onsider applications to martensite formation. Previous works con-

ider purely elastic materials even though non-negligible plastic

train may occur. Thus, Delannay et al. (2008) proposed to evalu-

te elastic-plastic accommodation by using a Finite Element model

f an embedded-cell model. One can also mention a different strat-

gy proposed by Ammar et al. (2009) based on a phase-field model

f phase transition in elastic-plastic materials where the free en-
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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ergy density accounts for dissipation and elastic and chemical 1 

contributions. 

All the previously mentioned works are based on a perfect ad-

hesion between the inclusion and the surrounding matrix of the

parent phase. However, experimental evidences of sliding inclu-

sions have been published by Saotome and Iguchi (1987) for in-

stance. Thus, this paper aims at developing an alternative inclusion

method adapted to sliding inclusions and that takes into account

plastic dissipation at the interface. The significance of sliding in-

clusions on the elastic energy when considering phase transitions

was already investigated by Tsuchida et al. (1986) and Mura et al.

(1985) ; Jasiuk et al. (1987) for perfectly sliding inclusions in two

and three dimensions respectively. More precisely, continuity of

normal traction and normal displacements at the inclusion/matrix

interface is assumed as well as a condition of vanishing shear trac-

tion. Tangential displacements are discontinuous at the interface

and are determined through the latter shear free condition. On this

basis, it was shown that allowing for sliding reduces the energy

needed for the transformation to occur. In this paper, imperfectly

sliding inclusions are considered and shear stresses are not set to

zero at the interface. 

Imperfectly sliding inclusion problems have already been solved

by Huang et al. (1993) and Ru (1998) , by modeling the relative

magnitude of sliding by introducing a parameter varying between

zero (perfectly bounded interface) and one (perfectly sliding in-

terface) and by Zhong and Meguid (1997) by assuming that the

normal stress is proportional to the corresponding tangential dis-

placement discontinuity which amounts to a Coulomb type friction

law. Relying on the same assumption, Mogilevskaya and Crouch

(2002) solved the problem of multiple circular sliding inclusions

by using a Galerkin boundary integral method. 

The approach developed in this paper differs from previous so-

lutions to the extent that there is no assumption on shear traction

at the interface and no a priori relationship between tangential dis-

placement discontinuity and normal traction. The problem of an

inclusion subject to a known eigenstrain and prescribed sliding is

solved with continuity of normal and shear traction and continuity

of normal displacement at the interface. The whole solution de-

pends on the prescribed slip and energetic arguments are eventu-

ally used in order to determine the actual slip that the system will

reach. 

These energetic arguments come from experimental observa-

tions performed by Saotome and Iguchi (1987) that enable to inter-

pret sliding as localized plasticity at the interface. Therefore, dis-

sipated energy should be taken into account. This is not allowed

by the previously mentioned papers, where sliding is determined

by an arbitrary proportionality relation between normal traction

and tangential displacement discontinuity or by setting shear trac-

tion to zero. The energetic approach, that ultimately enables to de-

termine sliding, classically consists in minimizing a global energy

that takes into account bulk energy and plastic dissipation. Within

the framework introduced for instance by Fedelich and Ehrlacher

(1997) and Mielke (2003) , dissipation can be seen as a cost (or a

distance) that the system has to pay (or to cross) to get a new

state, therefore the state variables are those that optimize the bulk

energy accounting for the cost to reach this new state. It should

be noted that plasticity is considered only at the interface (shear

band) and not in the inclusion or matrix bodies. 

In the present work, these ideas are applied to the two-

dimensional problem of a circular inclusion subject to a given

eigenstrain and surrounded by an infinite matrix. An approxi-

mate solution to the problem of an inclusion subject to a given

eigenstrain and an arbitrary sliding prescribed at the interface is
1 which represents the difference of structural state between phases. 

S  

p  

d  

Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
rst derived in the context of complex analysis and the works

f Muskhelishvili (1953) . A numerical minimization of the sum of

lastic and dissipated energies at the interface (given as a func-

ion of the prescribed sliding) is then performed, in order to de-

ermine the actual sliding that the system will reach when loaded

y the eigenstrain. A yield strength for the boundary is introduced

n order to compute the dissipated energy. This variational method

nsures that the von Mises yield criterion is met for sliding to oc-

ur. The numerical results thus obtained are then compared with

esults from a finite element method calculation performed on

baqus in the case of free slip. Note that the general case of a fi-

ite yield strength would require the introduction of interface el-

ments with a plastic behavior between the inclusion and its sur-

oundings, which does not appear to be implemented in Abaqus to

he best of the authors’ knowledge. One contribution of this work

s thus the ability of the method to deal with a perfectly plastic

nterface. Finally, the behavior of the solution proposed with finite

ield strength is investigated. The convergence of the results with

he truncation of the expansions is also investigated, and a Gibbs

henomenon is naturally observed when the tangential component

ecomes discontinuous. 

The approximate solution developed here is eventually used to

stimate the mechanical energy that has to be provided by the sur-

oundings to the system for a single circular region of space to un-

ergo a phase transition with a given eigenstrain. The plastic dissi-

ation at the interface is shown to be non neglectable with respect

o the elastic energy stored during the process. The total energy,

hat is the sum of the elastic energy and the plastic dissipation, is

hus interpreted as the energy that is needed for this phase tran-

ition to occur locally. 

. Semi-analytical solution to the problem of a circular sliding 

nclusion with non-zero tangential component of the 

nterfacial tractions 

The semi-analytical solution to the problem of a sliding circular

nclusion subject to a given uniform eigenstrain expressed in its

rincipal directions is derived in this section. Let the Ox and Oy

xes of the Cartesian coordinate system be the principal directions

f the eigenstrain ε ∗, so that the matrix associated with ε ∗ in this

oordinate system is: 

 

∗ = 

(
ε ∗xx 0 

0 ε ∗yy 

)
(1)

Both the inclusion and the matrix are linear elastic and plane

heory of elasticity is considered. The Lamé coefficients of the in-

lusion and the matrix are denoted by ( λI , μI ) and ( λM 

, μM 

),

here I and M stand for inclusion and matrix respectively. The

ollowing derivation uses complex potentials and expansions into

ower series, Laurent series and Fourier series. The solution that is

erived here can be broken down into three parts. First, the solu-

ion to the problem of a disk with prescribed surface tractions at

he boundary, and the solution to the problem of a matrix with

 circular hole with prescribed surface tractions along the hole

nd no displacement at infinity are addressed in Sections 2.2 and

.3 respectively. These solutions are obtained by expanding the

rescribed surface tractions into a Fourier series and is quite anal-

gous to the solutions given by Muskhelishvili (1953) . Then, using

hese two preliminary solutions, the problem of a circular inclusion

ubject to a given uniform eigenstrain and a prescribed trial slid-

ng along the interface is derived in Section 2.4 . The trial sliding

s denoted by g ( θ ) where r, θ are polar coordinates. Eventually the

ctual sliding that the system will reach is denoted by g S ( θ ) where

 stands for solution . To solve this sliding inclusion problem, the

rescribed surface tractions are eliminated using continuity con-

itions on the displacement (accounting for the trial sliding g ( θ ))
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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w

nd the continuity of the normal and shear traction. As a result,

isplacements and stresses in the whole domain as a function of

he prescribed trial sliding are obtained. At this point, it is neces-

ary to point out that the interfacial tractions are not known dur-

ng the first step, so it is natural that they should be eliminated at

ome point. Also, in the general case, it is not possible to derive

he exact analytical solution to this problem, as an infinite number

f equations are obtained with an infinite number of unknowns

o eliminate. It is however possible to truncate the series and de-

ive numerically efficient solutions obtained by simply inverting a

atrix. Finally, the third step consists in using the solution to the

roblem of the prescribed trial sliding g ( θ ) at the interface to nu-

erically minimize the sum of the elastic potential energy and the

lastic dissipation at the boundary. Thus the determination of the

ctual sliding that the system will reach reads: 

 

S (θ ) = argmin 

g(θ ) 

E [ g(θ ) ] (2) 

here the global energy E [ g ( θ )] is written: 

 [ g(θ ) ] = W E [ g(θ ) ] + D [ g(θ ) ] (3)

here W E is the stored elastic energy and D the plastic dissipation.

he elastic energy can be computed numerically by an integral on

he interface and the plastic dissipation as well. It should be noted

hat the actual sliding g S ( θ ) is thus a result of the calculation, and

he loading is obviously the eigenstrain in the inclusion. At each

tep of the minimization, a certain sliding is postulated and the

esulting global energy accounting for plastic dissipation is com-

uted. The algorithm searches for the sliding that minimizes the

lobal energy, and to do that an expansion of the sliding g ( θ ) into

 Fourier series is used so as to minimize on a finite number of

arameters, namely the coefficients of the Fourier series. 

As a result of the minimization process, E [ g S ( θ )] is obtained,

hich is the amount of energy that has to be provided by the

urroundings to the system during the process. Thus, it is inter-

reted as the energy needed for a phase transition to occur in a

ircular region of space, assuming that this phase transition pre-

cribes an eigenstrain to the inclusion, such as that prescribed by

he austenite-ferrite transition. 

.1. Preliminary remarks 

A well known approach introduced by Muskhelishvili (1953) for

lane isotropic elasticity under infinitesimal strain assumption is

o use two holomorphic potentials φ( z ) and ψ( z ) that are complex

unctions of z = x + i y = re i θ , where x and y are the Cartesian coor-

inates (matching the principal directions of the given eigenstrain)

nd r and θ the polar coordinates. z is thus the position of the

oint under consideration in the complex plane. These potentials

re defined so that one can derive from them the components of

he stress tensor and of the displacement vector at any given point

f the elastic body considered, using the following equations in the

olar basis: 
 

 

 

σrr + σθθ = 2(φ′ (z) + φ′ (z) ) 

σθθ − σrr + 2i σrθ = 2 e 2i θ ( z φ′′ (z) + ψ 

′ (z)) 

2 μ(u r + i u θ ) = e −i θ (κφ(z) − z φ′ (z) − ψ(z) ) 

(4) 

here μ is the shear modulus of the body and κ is defined by: 

= 

λ + 3 μ

λ + μ
(5) 

here λ is the Lamé’s first parameter of the body. One indeed uses

if one deals with a plane strain problem, but in the case of plane

tress, one needs to replace λ by λ∗ defined by: 

∗ = 

2 μλ

λ + 2 μ
(6) 
Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
It should be noted that potentials φ and ψ are not

nique. Using the fact that they are holomorphic, Muskhelishvili

1953) shows that two pairs of potentials φ1 , ψ 1 and φ2 , ψ 2 yield

he same state of stress if and only if one has: 

φ2 (z) = φ1 (z) + Ci z + γ
ψ 2 (z) = ψ 1 (z) + γ ′ (7) 

here C is a real constant and γ and γ ′ are two complex con-

tants. He also shows that they yield the same displacement if and

nly if one has: 

C = 0 

κγ − γ ′ = 0 

(8) 

This is due to the fact that C determines the rigid body rotation

nd κγ − γ ′ the rigid body translation of the body. This should be

onsidered to deal with rigid body motions of the inclusion and

he matrix in order to be able to fit the two solutions correctly. 

.2. An inclusion subject to prescribed surface tractions at the matrix 

nterface 

Consider an elastic circular inclusion of radius R subject to pre-

cribed surface tractions. Useful results for the present paper are

xposed but calculations are not detailed since similar problems

re solved by Muskhelishvili (1953) . The potentials φ and ψ are

olomorphic in a simply connected region, so they can be ex-

anded into a power series: 

φ(z) = 

+ ∞ ∑ 

k =0 

φk z 
k and ψ(z) = 

+ ∞ ∑ 

k =0 

ψ k z 
k (9) 

he surface traction is written as a simple complex function,

amely σ I 
rr (R, θ ) − i σ I 

rθ
(R, θ ) (with a superscript I for inclusion),

hat is expanded into a Fourier series: 

I 
rr (R, θ ) − i σ I 

rθ (R, θ ) = 

N−1 ∑ 

k = −N+1 

D k e 
i kθ (10)

here D k are the Fourier coefficients of the tractions. At this stage,

nly the expansion of the tractions is truncated, however identi-

cation of the coefficients shows that the holomorphic potentials

ave a finite number of non-zero coefficients, that are given by: 

 

 

 

 

 

D 1 = 0 

φ1 + φ1 = D 0 ∈ R 

φn = 

R 1 −n 

n 
D 1 −n , 2 ≤ n ≤ N 

ψ n = − R 1 −n 

n 
(D n +1 + n D −(n +1) ) , 1 ≤ n ≤ N − 2 

(11) 

It should be noted that D 1 = 0 and D 0 ∈ R are equivalent to

he resultant force and moment acting on the inclusion vanishing,

amely to the global equilibrium of the inclusion. At this point,

0 , ψ 0 and the imaginary part of φ1 are undetermined, which is

onsistent with the remarks of 2.1 since the rigid body motion of

he inclusion is unknown. Introducing the elastic constants of the

nclusion κ I and μI , one can deduce the displacement u 

I at the

oundary r = R after straightforward calculations: 

 μI (u 

I 
x − i u 

I 
y ) = −

−3 ∑ 

k = −N 

κI 

k 
D k +1 Re i kθ

+ 

κI 

2 
D −1 Re −2i θ + ( κI −1 

2 
D 0 R − i(κI + 1) � (φ1 ) ) e 

−i θ

+ κI φ0 − ψ 0 − D −1 R + 

N−2 ∑ 

k =1 

1 
k 

D k +1 Re i kθ

(12) 

here � ( z ) denotes the imaginary part of z . 
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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2.3. A matrix subject to prescribed surface tractions at the inclusion 

interface 

Consider an infinite elastic matrix with a circular hole of radius

R subject to prescribed surface tractions at the inclusion interface.

Alike the previous problem only the useful results for the present

paper are exposed. One proceeds in the same fashion as in the case

of the inclusion, except that this time the domain is not simply

connected, so that the potentials, denoted here α( z ) and β( z ), have

to be expanded into a Laurent series. It is assumed that there are

no displacements at infinity, so that the matrix does not have any

rigid body motion. Thus the expansions of α( z ) and β( z ) do not

possess any term with a positive exponent. The angular position

of the point under consideration will be denoted ϕ instead of θ to

avoid confusion later: 

α(z) = 

+ ∞ ∑ 

k =0 

αk 

z k 
and β(z) = 

+ ∞ ∑ 

k =0 

βk 

z k 
(13)

The surface traction is written as a simple complex function that

is expanded into a Fourier series as was previously done, but the

coefficients will be denoted P k instead of D k : 

σ M 

rr (R, ϕ) − i σ M 

rθ (R, ϕ) = 

N−1 ∑ 

k = −N+1 

P k e 
i kϕ (14)

As previously, one automatically gets P 1 = 0 , however one does

not get P 0 ∈ R . This is due to the fact that a non-zero resultant

moment on the boundary of the hole can be in equilibrium with

stresses at infinity. Basic calculations give: ⎧ ⎪ ⎨ 

⎪ ⎩ 

αn = − R n +1 

n 
P n +1 , 1 ≤ n ≤ N − 2 

β1 = R 

2 P 0 
β2 = 

R 3 

2 
P −1 

βn = 

R n +1 

n 
(P 1 −n − n P n −1 ) , 3 ≤ n ≤ N 

(15)

and it is obtained again that α0 and β0 are undetermined, but the

condition of zero displacement at infinity gives the following con-

dition: 

κM 

α0 − β0 = 0 (16)

where κM 

is one of the elastic constants of the matrix. Introducing

the second elastic constants of the matrix μM 

, one can deduce the

displacement u 

M at the boundary r = R : 

2 μM 

(u 

M 

x − i u 

M 

y ) = 

−3 ∑ 

k = −N 

1 

k 
P k +1 Re i kϕ − 1 

2 

P −1 Re −2i ϕ 

−P 0 Re −i ϕ −
N−2 ∑ 

k =1 

κM 

k 
P k +1 Re i kϕ (17)

2.4. Problem of the inclusion with given eigenstrain and prescribed 

sliding 

The results obtained previously are now used to solve the prob-

lem of an inclusion subject to a given eigenstrain and prescribed

sliding g ( θ ) with respect to the surrounding matrix. For usual non

sliding inclusion problems, the interfacial tractions are determined

by displacement and traction continuity. The problem being solved

here considers a prescribed sliding, and the identification of the

interfacial tractions cannot rely on displacement continuity but on

matching positions after transformation. The sliding is defined as

follows. At the interface, consider a material point belonging to

the inclusion located by the angular position θ , a material point

belonging to the matrix is then selected and located by the angu-

lar position ϕ( θ ) so that after transformation both material points

coincide. The sliding is then defined by the quantity: 

g(θ ) = ϕ(θ ) − θ (18)
Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
It should be noted that the interfacial tractions implicitly de-

end on the prescribed sliding g ( θ ). In order to make coincid-

ng material points defined by Re i θ in the inclusion and material

oints defined by Re i ϕ( θ ) in the matrix, consider first u 

∗ the dis-

lacement due to the eigenstrain ε ∗ alone as though the inclusion

ould expand freely, namely u 

∗ = ε ∗. X 

I (where X 

I denotes the po-

ition of a material point in the inclusion). Then, consider u 

I and

 

M the displacements of the inclusion and the matrix respectively

ue to the interfacial tractions arising from the interaction be-

ween the inclusion and the matrix, namely the solutions obtained

n Sections 2.2 and 2.3 . Thus the coinciding condition reads: 

e i θ + u 

∗
x + i u 

∗
y + u 

I 
x + i u 

I 
y = Re i ϕ(θ ) + u 

M 

x + i u 

M 

y (19)

nly infinitesimal sliding will be considered in what follows, that

s g ( θ ) << 1. Note that a given uniform finite sliding g(θ ) = g 0 is

ompatible with zero strains in both the inclusion and the matrix,

owever as will be noted later in the discussion the symmetry of

he problem with respect to the Ox axis rules out slidings that are

ot odd functions of θ . 

The condition on the displacements is established, and a con-

ition on the interfacial tractions still has to be found. To do that,

onsider at the interface a material surface belonging to the inclu-

ion (proportional to R d θ ) and the coinciding material surface in

he matrix (proportional to R d ϕ). Since d ϕ = ϕ 

′ (θ )d θ, the conti-

uity of the traction vector thus yields: 

 d θσ I (R, θ ) . e r (θ ) = Rϕ 

′ (θ )d θσM (R, ϕ(θ )) . e r (ϕ(θ )) (20)

fter simplifications and projection on the x and y axes, one ob-

ains: 

 

 

 

 

 

σ I 
rr (R, θ ) cos θ − σ I 

rθ
(R, θ ) sin θ

= ϕ 

′ (θ ) σ M 

rr (R, ϕ(θ )) cos ϕ(θ ) − ϕ 

′ (θ ) σ M 

rθ
(R, ϕ(θ )) sin ϕ(θ ) 

σ I 
rr (R, θ ) sin θ + σ I 

rθ
(R, θ ) cos θ

= ϕ 

′ (θ ) σ M 

rr (R, ϕ(θ )) sin ϕ(θ ) + ϕ 

′ (θ ) σ M 

rθ
(R, ϕ(θ )) cos ϕ(θ ) 

(21)

ultiplying the second equation by i and adding the two, a com-

lex equation is obtained, and together with (19) they form the

ollowing system of equations: 

 

2(Re −i θ + u 

∗
x − i u 

∗
y + u 

I 
x − i u 

I 
y ) = 2(Re −i ϕ(θ ) + u 

M 

x − i u 

M 

y ) 

(σ I 
rr (R, θ ) − i σ I 

rθ
(R, θ )) e −i θ = ϕ 

′ (θ )(σ M 

rr (R, ϕ(θ )) 

−i σ M 

rθ
(R, ϕ(θ ))) e −i ϕ(θ ) 

(22)

These equations enable us to calculate coefficients φk , ψ k , αk 

nd βk using simple matrix computation. However, this part being

ather technical, details are presented in Appendix A . The complete

olution of the circular inclusion, subjected to a given eigenstrain

nd prescribed sliding, is obtained. 

. Numerical solution to the problem of the inclusion subject 

o a given eigenstrain 

Previous sections deal with a prescribed sliding g ( θ ), that is ul-

imately determined in this section by using an energetic approach,

onsisting in minimizing a global energy that takes into account

ulk energy and plastic dissipation. Within the framework intro-

uced for instance by Fedelich and Ehrlacher (1997) and Mielke

2003) , dissipation can be seen as a cost that the system has to

ay to get a new state, therefore the sliding should optimize the

um of the bulk energy W E [ g ( θ )] and the dissipation cost D [ g ( θ )]

s defined by (3) . It should be noted that plasticity is considered

nly at the interface (shear band) and not in the inclusion or ma-

rix bodies. 

The elastic potential energy W E [ g ( θ )] stored by the system as a

esult of the imposed eigenstrain due to phase transition and the
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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Table 1 

Numerical values of the parameters. 

S y (GPa) 0.5 

κ I 2.33 

μI (GPa) 126 

κM 2.21 

μM (GPa) 101 

g  

w  

n  

t  

A  

d  

t  

w  

c  

n  

u  

t  

n  

t  

t  

t

 

f  

m  

n  

S  

fi  

t  

t  

o  

t  

o  

t  

o  

t  

p  

−  

l  

t

4

 

p  

l  

t  

t  

i  

p  

w  

c  

i  

s  

l  

u  

w  

t  

d

 

c  

u  

i  
liding g ( θ ) is defined by: 

 E [ g(θ ) ] = 

1 

2 

∫ 

I 

σ I : ε 

I d S + 

1 

2 

∫ 

M 

σM : ε 

M d S (23)

Where ε I and ε M are gradients symmetric parts of u 

I and u 

M 

espectively. However W E [ g ( θ )] can be computed as an integral on

he interface by using the principle of virtual work and neglect-

ng body forces. Paying attention to the outward normals being in

pposite directions for the inclusion and the matrix, the following

esult is obtained: 

 E [ g(θ ) ] = 

1 

2 

∫ 
∂
I 

(
( σ I n ) · u 

I − ( σM n ) · u 

M 

)
d S (24) 

here ∂
I is the boundary of the inclusion, namely the surface

 = R . Denoting e the thickness of the matrix it is obtained: 

 E [ g(θ ) ] = 

eR 

2 

2 π∫ 
0 

( σ I (R, θ ) e r (θ )) · u 

I (R, θ )d θ

−eR 

2 

2 π∫ 
0 

( σM (R, ϕ) e r (ϕ)) · u 

M (R, ϕ)d ϕ (25) 

hich may be written, after substituting the integration variable in

he second integral and using successively (20) and (19) : 

 E [ g(θ ) ] = 

eR 

2 

2 

2 π∫ 
0 

( σ I (R, θ ) e r (θ )) · [ e r (ϕ(θ )) − e r (θ ) − e ∗(θ ) ] d θ

(26) 

here e ∗(θ ) = 

1 
R u 

∗(R, θ ) has been introduced, which is a dimen-

ionless vectorial function of θ that does not depend on R , in order

o exhibit the factor eR 2 . The interfacial tractions do not depend on

 either, so that it was eventually possible to show that the total

lastic potential energy is proportional to the volume of the inclu-

ion. It is clear that W E [ g ( θ )] does not depend explicitly on g ( θ )

ut rather implicitly through σ I ( R, θ ) and e ∗( θ ) that are identified

y (22) for each tested g ( θ ). 

On the other hand the plastic dissipation D [ g ( θ )] is defined as

ollows: 

 [ g(θ ) ] = eR 

2 S y 

2 π∫ 
0 

| g(θ ) | d θ (27)

S y being the yield strength at the interface. This formula simply

omes from the integration over the interface of the work done

y the tangential component of the interfacial tractions, of mag-

itude S y when slip occurs, in the displacement discontinuity, of

agnitude R | g ( θ )| by definition of g ( θ ). The surface element of the

oundary being eR d θ , one indeed gets (27) . It is expected from

his minimization process that for small eigenstrains the tangen-

ial component of the interfacial tractions be equal to ± S y where

liding occurs, and that it be strictly between −S y and S y where

liding does not occur. This is thus equivalent to introducing a per-

ectly plastic behavior at the interface. Furthermore the dissipation

s also proportional to the volume of the inclusion so that the re-

ults will not depend on the size of the inclusion, and there is no

haracteristic size involved in the minimization process. This is due

o the fact that perfect plasticity has been considered at the inter-

ace. Adding a hardening behavior would have yielded a certain

ptimum size for the appearing inclusion. 

In practice, a Matlab (The MathWorks Inc.) function that com-

utes the energy and the dissipation at the interface when given

 certain sliding function has been programmed. Then a minimiza-

ion algorithm is applied on a finite dimensional space. To do that,
Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
 ( θ ) is expanded into a Fourier series and E [ g ( θ )] is minimized

ith respect to the Fourier coefficients. Three things should be

oted in order to make the calculations much faster. First, ma-

rix G can be computed easily from matrix I (both introduced in

ppendix A ) by integrating by parts. Computing integrals is in-

eed the most time consuming part of the algorithm. Secondly,

he small sliding approximation enables one to linearize matrix I ,

hich may then be computed explicitly from the Fourier coeffi-

ients of function g ( θ ), which makes calculations even faster. Fi-

ally, to speed up even further the minimization process one can

se the symmetries of the problem: the symmetry with respect to

he Ox axis makes the sliding an odd function, so that there are

o cosines in the expansion in Fourier series of the sliding, and

he symmetry with respect to the Oy axis eliminates the terms of

he type sin ((2 n + 1) θ ) . Only linear combinations of sin (2 n θ ) may

hen be considered. 

In order to minimize the total energy, the “fminunc” Matlab

unction was used. This function is able to solve nonlinear opti-

ization problems such as those involved in this paper. The quasi-

ewton method was chosen to solve this minimization problem.

tarting from a randomly chosen initial guess of the Fourier coef-

cients of the slip, minimization is performed until the solver at-

empts to take a step smaller than a given value, called the step

olerance. The Fourier coefficients of the slip have typical values

f the order of 10 −6 , and the absolute tolerance on the step of

he algorithm was set to 10 −12 in order to have a relative error

n the solution of order 10 −6 . The random initial guess was taken

o be of relatively small amplitude, since the framework proposed

nly deals with such slips, but it was still set rather higher than

he typical values of 10 −6 so as to check that the minimization

rocess is robust. The initial Fourier coefficients thus range from

0 . 5 × 10 −2 to 0 . 5 × 10 −2 . Running the program several times al-

ows to check that the same solution is obtained, independent of

he initial guess. 

. Results 

In what follows, all stresses are expressed in GPa and energies

er unit of volume are given in J/mm 

3 . Indeed, it was shown ear-

ier that the total energy is proportional to eR 2 , so that the size of

he inclusion does not impact the minimization in any way, it is

hus simpler to present energies per unit of volume without spec-

fying the inclusion size. The numerical values chosen to test our

rogram were taken so as to match the properties of pure iron

here a ferrite inclusion appears in an austenite matrix. Elastic

onstants were obtained from the calculations of the atomic model

n Müller et al. (2007) , and a typical value of the shear strength of

teel was taken as the yield strength at the interface. Values are

isted in Table 1 . In addition, let us note that the numerical val-

es resulting from calculations that are given below were obtained

ithout linearization of matrix I for accuracy purposes, although

he linearized algorithm gives energies that agree with the stan-

ard algorithm within 0.001% and is much faster. 

The method described previously was tested on a first loading

ase that purposely does not present the symmetries of the partic-

lar problem investigated here, so as to show the proper function-

ng of the Matlab program that was written. No eigenstrain was
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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Table 2 

Energies computed by our semi-analytical method and Abaqus. 

Semi-analytical method Abaqus 

Elastic energy in the inclusion (J/mm 

3 ) 0.2412 0.2340 

Elastic energy in the matrix (J/mm 

3 ) 0.1456 0.1376 

Total elastic energy (J/mm 

3 ) 0.3871 0.3716 
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applied at this stage, and the loading case that was chosen was

g : θ �→ 0 . 1 sin 

+ (θ ) , where sin 

+ (θ ) is the positive part of sin ( θ ).

This means that for θ between 0 and π the sliding is equal to

0.1sin ( θ ), and for θ between π and 2 π it is equal to zero. It is

readily seen that this loading case does not possess the symmetry

with respect to either the Ox or the Oy axis. Furthermore, it is in-

teresting because of the discontinuity of the derivative for θ = π
and θ = 2 π when considering g as a function of period 2 π . This

problem was solved with 30 Fourier coefficients in the expansion

of the sliding. The displacements at the interface obtained with

the solution presented in this contribution were then set on the

nodes of a 2D Abaqus model using quadrangles of 0.1mm edges,

and the elastic energies in the inclusion and in the matrix were

computed. The total energy computed in Abaqus agrees with our

results within 4%, as can be seen from Table 2 , and the Abaqus

energies are slightly lower than the energies obtained with the

present solution, which was to be expected for the matrix since it

is of finite extent in the Abaqus model, but can only be attributed

to both our approximation (a finite number of Fourier coefficients)

and that of Abaqus (inherent to the finite elements method) for

the inclusion. 

The second loading case used to test the program was a case of

eigenstrain with a zero yield strength at the interface. The compo-

nents of the eigenstrain were also taken so as to be proportional

to the eigenstrain experienced by austenite when changing into

ferrite through the Bain path (see Müller et al., 2007 ), and were

calculated from Müller et al. (2007) . The proportionality factor is

denoted by E B and is taken between 0 and 1, and the eigenstrain

is thus given by: 

ε 

∗ = E B 

(
0 . 12 0 

0 −0 . 21 

)
(28)

This problem was solved for E B = 1 and taking advantage of the

symmetries as mentioned in Section 3 , and using 10 functions of

the type sin (2 n θ ) in the expansion of g ( θ ). Then the same eigen-

strain was applied in a 2D Abaqus model similar to the one de-

scribed before, with no friction between the inclusion and the ma-

trix, and the sliding occurring in that simulation has been calcu-

lated for comparison. This calculation was made by linearly inter-

polating the initial positions of the points of the matrix coinciding

with the nodes of the inclusion in the current configuration of the

simulation. Given the size of the elements used, the fact that a lin-

ear interpolation was used, and the fact that in the Abaqus model

the matrix is of finite extent, the results shown in Fig. 1 coincide

nicely. Note that in the Abaqus model stress free boundary condi-

tions were applied to the edge of the matrix instead of the zero

displacement condition applied at infinity in the semi-analytical

solution. These boundary conditions combined with the finiteness

of the matrix makes it structurally more compliant, and a sliding

of greater amplitude is thus expected, which is indeed the case.

Zero displacement boundary conditions in the Abaqus model could

have been used instead, but they would have made the matrix

structurally stiffer, so that neither case is perfectly fitting. Since the

Abaqus model is inherently imperfect due to discretization of the

circles that slide against each other, the authors did not study any

further the influence of the boundary conditions or the size of the

domain considered. 
Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
The program was then used to solve different problems with a

on-zero yield strength in order to confirm the intuition on how it

hould perform depending on the eigenstrain applied and the yield

trength at the interface. To do so, a yield strength of 0.5GPa is

hosen, corresponding to the shear strength of a material like steel

ith a tensile strength of 1GPa and obeying a Von Mises yield cri-

erion, and E B varies between 0 and 1. For each case, the sliding

btained from the minimization is plotted along with the tangen-

ial component of the interfacial traction denoted by T θ for com-

arison. Three main types of curves were obtained: for low enough

igenstrains ( E B < 0.05), no sliding occurs (what is plotted is due

o the finite precision of the calculation and is random noise) and

 T θ | is strictly below S y (see Fig. 2 ); around E B = 0 . 05 sliding starts

o occur locally, and where is does the criterion is saturated (i.e.,

 T θ | = S y ) as shown in Fig. 3 ; finally for E B > 0.15 sliding occurs

long the whole edge and the criterion is saturated everywhere

n the edge as shown in Fig. 4 . In addition, note that on Fig. 3 are

hown the results for 10 and 25 functions in the expansion of g ( θ ),

nd it is clear that for 10 functions the presented method has al-

eady converged. 

On Figs. 2 and 4 , the solid line shows the sliding obtained di-

ectly from the Fourier coefficients obtained at the end of the mini-

ization procedure, while the stars show the sliding deduced from

he displacements of the inclusion and the matrix at the interface

nown from (12) and (17) , where P k and D k are calculated from

he Fourier coefficients of the sliding via (A.30) and (A.21) respec-

ively. The sliding may indeed be deduced from the displacements

y calculating the position x in the current configuration of a point

 

I (R, θ ) = R e r (θ ) of the inclusion via (12) , and then by determin-

ng ϕ such that the point X 

M (R, ϕ) = R e r (ϕ) of the matrix coin-

ides with x in the current configuration via (17) . Since this re-

uires to calculate ϕ as a function of X 

M + u 

M , for which we do

ot have an analytical formula, this calculation was performed nu-

erically by minimizing the function || x − X 

M (R, ϕ) − u 

M (R, ϕ) ||
ith respect to ϕ for several values of θ . The perfect agreement

etween the curve and the stars shows the consistency of the pro-

ram when calculating the displacements from a prescribed slid-

ng, since said sliding can be recovered from the displacements.

ven though the program converges quickly with the number of

unctions in the expansion of g ( θ ), 20 functions were used to be

s precise as possible and reduce fluctuations while keeping the

unning time relatively low. With 20 functions, the appearance of

 Gibbs phenomenon due to the discontinuity of T θ is clear on

ig. 4 . Analysis of the Von Mises equivalent stress shows that for

 B > 0.03, plasticity should occur in the medium, which means

hat the method presented here should only apply for relatively

mall eigenstrains, since it does not take plasticity into account.

he maximum Von Mises equivalent stress indeed reaches 1GPa in

he matrix for E B = 0 . 03 . 

Finally, the confidence gained through these tests allowed us to

tudy the evolution of the energy needed for the transformation

o occur, see the introduction to Section 2 , as a function of S y . For

 B = 0 . 05 , several values have been considered for S y and the to-

al energy needed for the transformation to occur is presented in

ig. 5 . For S y = 0 , the inclusion can slide perfectly against the ma-

rix and T θ = 0 at the interface. For S y → + ∞ we return to the case

f perfect adherence, and imperfect adherence indeed reduces the

otal energy needed up to 12%. 

. Conclusion 

In the present work, a semi-analytical solution to the problem

f a sliding circular inclusion subjected to an eigenstrain and sur-

ounded by an infinite matrix has been derived and applied to nu-

erically evaluate the energy needed for a phase transition to oc-

ur. A yield criterion of the interface is introduced, and numerical
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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Fig. 1. Sliding calculated with our semi-analytical method and sliding calculated with Abaqus. 

Fig. 2. Sliding and tangential component of the interfacial tractions obtained with S y = 0 . 5 GPa, E B = 0 . 03 and 20 functions in the expansion of g ( θ ). 
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alculations show that for small eigenstrains, it has a very simple

nterpretation: the absolute value of the tangential component of

he interfacial tractions is equal to the yield strength where sliding

ccurs, and it is strictly below it where sliding does not occur. The

liding, due to localized plasticity (associated to a dissipation po-

ential) has been evaluated within the framework of an energetic

pproach. The argument could be made that the elastic constants

f steel at room temperature were used, when the austenite-ferrite

hase transition occurs around 912 °C, at which point the elastic

onstants are greatly reduced. However, since the yield strength of

he material also drops in a similar fashion, the conclusions re-

ain valid. Performing calculations for different eigenstrain ampli-

udes, three regimes are essentially found: when the eigenstrain

s sufficiently low no slip occurs at the interface, then for a cer-
Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
ain amplitude slip starts to occur locally and the tangential com-

onent of the interfacial tractions is found to be consistent with

he yield criterion, and finally for large enough amplitude slip oc-

urs on the whole interface so that the criterion is met at all of its

oints. The relevance of taking into account the plastic dissipation

t the interface was eventually showed: for an eigenstrain of only

% the amplitude of that experienced during the phase change of

ustenite into ferrite, the energy difference between a free slip and

 no slip interface condition amounts to 12% of the total mechan-

cal energy needed for the transformation to occur without slip.

or eigenstrains closer to the actual value, plastic dissipation at the

nterface and inside the inclusion and its surroundings can be as-

umed to have an even greater importance, however the frame-

ork developed here is unable to deal with strains as high as 20%.
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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Fig. 3. Sliding and tangential component of the interfacial tractions obtained with S y = 0 . 5 GPa, E B = 0 . 05 and respectively 10 and 25 functions in the expansion of g ( θ ). 

Fig. 4. Sliding and tangential component of the interfacial tractions obtained with S y = 0 . 5 GPa, E B = 0 . 15 and 20 functions in the expansion of g ( θ ). 
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3

This contribution is part of a more general framework that con-

sists in modeling phase nucleation considering both the energy

gain at the atomic scale when the crystal lattice is modified and

elastic and dissipated energies at the scale of continuum mechan-

ics. Thus a global energy can be minimized in order to determine

phase nucleation allowing for discontinuities (i.e., that the prod-

uct phase can appear with a certain size). Most attempts in this

direction rely on Eshelby’s theory or perfectly sliding inclusions.
Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
aking into account the plastic dissipation at the boundary of the

nclusion, this contribution extends in 2D these previous inclusion

ethods while confirming the result that sliding does decrease the

otal energy needed for phase transition to occur. However, the

resented results show that for realistic eigenstrains involved in

hase transition, plasticity should be be taken into account in the

atrix and possibly in the inclusion. Furthermore an extension in

D is also needed. 
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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Fig. 5. Total energy calculated for E B = 0 . 05 and S y from 0 to 0.7GPa using 20 func- 

tions in the expansion of g ( θ ). 
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ppendix A. Coefficient determination 

Substituting (10) and (14) in the second line of (22) one gets: 

N−1 ∑ 

 = −N+1 

D k e 
i(k −1) θ = ϕ 

′ (θ ) 
N−1 ∑ 

k = −N+1 

P k e 
i(k −1) ϕ(θ ) (A.1)

Multiplying by 1 
2 π e −i(n −1) θ for n from 1 − N to N − 1 and inte-

rating from 0 to 2 π yields: 

 n = 

N−1 ∑ 

k = −N+1 

P k 
1 

2 π

2 π∫ 
0 

ϕ 

′ (θ ) e 
i 

(
(k −1) ϕ(θ ) −(n −1) θ

)
d θ, 

−N + 1 ≤ n ≤ N − 1 (A.2) 

Equation (A.2) can be written as an equation between matri-

es by introducing D and P the column matrices whose elements

re D n and P k , and G the square matrix whose elements are G n,k =
1 

2 π

2 π∫ 
0 

ϕ 

′ (θ ) e 
i 
(
(k −1) ϕ(θ ) −(n −1) θ

)
d θ . The equation is then: 

 = G P (A.3) 

The displacement due to the eigenstrain is: 

(u 

∗
x − i u 

∗
y ) = (ε ∗xx − ε ∗yy ) Re i θ + (ε ∗xx + ε ∗yy ) Re −i θ (A.4)

o that the left side of (22) , denoted s ( θ ), may be written: 

 (θ ) = (2 + ε ∗xx + ε ∗yy − i κI +1 
μI 

� (φ1 ) ) Re −i θ + 

1 
μI 

(κI φ0 − ψ 0 − D −1 R ) 

+(ε ∗xx − ε ∗yy ) Re i θ + R 

N−1 ∑ 

k = −N+1 

( �D ) k e 
i(k −1) θ

(A.5) 

here the column matrix D has been used again and where has

een introduced the diagonal matrix � whose diagonal elements

re: 

n,n = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

− κI 

μI (n −1) 
, −N + 1 ≤ n ≤ −2 

κI 

2 μI 
, n = −1 

(κI −1) 
2 μI 

, n = 0 

1 
μI (n −1) 

, 2 ≤ n ≤ N − 1 

(A.6) 

�1, 1 may be arbitrarily set since D 1 = 0 , so it will be set to

ero. Multiplying by 1 
2 π e −i(n −1) θ for n from −N + 1 to N − 1 and in-

egrating from 0 to 2 π yields 2 N − 1 equations that can be written
Please cite this article as: J. Bluthé et al., Energetic approach for a sli

application to phase nucleation, International Journal of Solids and Stru
s a matrix equation by introducing S the column matrix whose

lements are 1 
2 π

2 π∫ 
0 

s (θ ) e −i(n −1) θ d θ : 

 = −R A + R �D (A.7) 

here A is a column matrix whose elements are: 

 n = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

0 , −N + 1 ≤ n ≤ −1 

−(2 + ε ∗xx + ε ∗yy ) + i κI +1 
μI 

� (φ1 ) , n = 0 

− 1 
RμI 

(κI φ0 − ψ 0 − D −1 R ) , n = 1 

ε ∗yy − ε ∗xx , n = 2 

0 , 3 ≤ n ≤ N − 1 

(A.8) 

The right side, denoted t ( ϕ( θ )), can be written: 

(ϕ(θ )) = 2 Re −i ϕ(θ ) + R 

N−1 ∑ 

k = −N+1 

( �P ) k e 
i(k −1) ϕ(θ ) (A.9)

here � is the diagonal matrix whose diagonal elements are: 

n,n = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 
μM (n −1) 

, −N + 1 ≤ n ≤ −2 

− 1 
2 μM 

, n = −1 

− 1 
μM 

, n = 0 

− κM 

μM (n −1) 
, 2 ≤ n ≤ N − 1 

(A.10) 

�1, 1 may also be set arbitrarily since P 1 = 0 , so it will be set

o zero. Multiplying by 1 
2 π e −i(n −1) θ for n from −N + 1 to N − 1 and

ntegrating from 0 to 2 π yields once again 2 N − 1 equations that

an be written as a matrix equation by introducing T the column

atrix whose elements are 1 
2 π

2 π∫ 
0 

t(ϕ(θ )) e −i(n −1) θ d θ : 

 n = RB n + R 

[ 

N−1 ∑ 

k = −N+1 

( �P ) k 
1 

2 π

2 π∫ 
0 

e i ( (k −1) φ(θ ) −(n −1) θ ) d θ

] 

(A.11)

here B , whose elements are B n = 

1 
2 π

2 π∫ 
0 

2 e −i ( ϕ(θ )+(n −1) θ ) d θ has

een introduced. Introducing the square matrix I whose elements

re I n,k = 

1 
2 π

2 π∫ 
0 

e i ( (k −1) ϕ(θ ) −(n −1) θ ) d θ one can write: 

 = R B + R I �P (A.12) 

The first line of (22) may then be written, after simplifying by

 : 

D = A + B + I �P (A.13) 

Before going any further, let us recall briefly the dependencies

f each term: 

• � depends on the elastic constants of the inclusion 

• � depends on the elastic constants of the matrix 

• A depends on the eigenstrain and the rigid body motion of the

inclusion 

• B , G and I depend on the sliding 

The problem that has to be solved is thus the following: 

D = G P 
�D = A + B + I �P 

(A.14) 

ithout forgetting that D 1 = 0 , P 1 = 0 and D 0 ∈ R . System (A.14) is

 linear system of complex equations, but it cannot be inverted di-

ectly because of the fact that D 0 ∈ R . Instead, we need to separate

etween the real and imaginary parts of these equations to solve

he system. To do so, let us write column matrices D and P as fol-

ows: 

D = d + i d 

′ 
P = p + i p 

′ (A.15) 
ding inclusion accounting for plastic dissipation at the interface, 

ctures (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.05.023 
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where d , d ′ , p and p 

′ are real column matrices. We will write in

an analogous fashion A = a + i a 

′ , B = b + i b ′ , G = g + i g ′ , � = l ( �
is already a real matrix) and I � = M = m + i m 

′ . Let us now write

the first line of Eq. (A.14) for n = 0 : 

d 0 = 

N−1 ∑ 

k = −N+1 

(g 0 ,k + i g ′ 0 ,k )(p k + i p ′ k ) (A.16)

and taking the imaginary part of this equation yields: 

0 = 

N−1 ∑ 

k = −N+1 

(g 0 ,k p 
′ 
k + g ′ 0 ,k p k ) (A.17)

A value of k for which g 0, k 
 = 0 has to be selected, and it is

assumed that this holds for k = 0 because in practice the sliding

is going to be very small so that g 0 , 0 = � (G 0 , 0 ) ≈ 1 . Then, one can

write: 

p ′ 0 = − 1 

g 0 , 0 

[ ∑ 

k 
 =0 

(g 0 ,k p 
′ 
k + g ′ 0 ,k p k ) + g ′ 0 , 0 p 0 

] 

(A.18)

so that p ′ 0 has been determined as a function of the p k and the

other p ′ 
k 
. The first line of Eq. (A.14) can now be written, after sep-

arating the real part and the imaginary part: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

d k = 

N−1 ∑ 

n = −N+1 

(g k,n p n − g ′ 
k,n 

p ′ n ) , −N + 1 ≤ k ≤ 0 and 2 ≤ k ≤ N − 1

d ′ 
k 

= 

N−1 ∑ 

n = −N+1 

(g ′ 
k,n 

p n + g k,n p 
′ 
n ) , −N + 1 ≤ k ≤ −1 

and 2 ≤ k ≤ N − 1 

(A.19)

Substituting (A.18) in this equation yields: ⎧ ⎪ ⎨ 

⎪ ⎩ 

d k = 

N−1 ∑ 

n = −N+1 

(g k,n + 

g ′ 
k, 0 

g 0 , 0 
g ′ 0 ,n ) p n + 

∑ 

n 
 =0 

( 
g ′ 

k, 0 

g 0 , 0 
g 0 ,n − g ′ 

k,n 
) p ′ n 

d ′ 
k 

= 

N−1 ∑ 

n = −N+1 

(g ′ 
k,n 

− g k, 0 

g 0 , 0 
g ′ 0 ,n ) p n + 

∑ 

n 
 =0 

(g k,n − g k, 0 

g 0 , 0 
g 0 ,n ) p 

′ 
n 

(A.20)

Thus the column matrix obtained by concatenating d k for k 
 =
1 and d ′ 

k 
for k 
 = 0, 1 is expressed as a certain matrix multiplied

by the analogous concatenation for p k and p ′ 
k 
. It is not necessary

to take into account the equations obtained for k = 0 because they

yield 0 = 0. The concatenations just mentioned will be denoted d̃

and ˜ p , and the matrix linking the two ˜ g so that one has: 

˜ d = ˜ g ˜ p (A.21)

Writing in the same fashion the second line of Eq. (A.14) yields:

⎧ ⎪ ⎨ 

⎪ ⎩ 

l k,k d k = a k + b k + 

N−1 ∑ 

n = −N+1 

[
m k,n p n − m 

′ 
k,n 

p ′ n 
]

l k,k d 
′ 
k 

= a ′ 
k 
+ b ′ 

k 
+ 

N−1 ∑ 

n = −N+1 

[
m 

′ 
k,n 

p n + m k,n p 
′ 
n 

] (A.22)

For k = 1 one has: ⎧ ⎪ ⎨ 

⎪ ⎩ 

0 = a 1 + b 1 + 

N−1 ∑ 

n = −N+1 

[
m 1 ,n p n − m 

′ 
1 ,n p 

′ 
n 

]
0 = a ′ 1 + b ′ 1 + 

N−1 ∑ 

n = −N+1 

[
m 

′ 
1 ,n p n + m 1 ,n p 

′ 
n 

] (A.23)

but from (A.8) one has a 1 = − 1 
RμI 

� (κI φ0 − ψ 0 ) + 

1 
μI 

d −1 and a ′ 
1 

=
− 1 

Rμ � (κI φ0 − ψ 0 ) − 1 
μI 

d −1 so: 

I 
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1 
RμI 

� (κI φ0 − ψ 0 ) = 

1 
μI 

d −1 + b 1 + 

N−1 ∑ 

n = −N+1 

[
m 1 ,n p n − m 

′ 
1 ,n p 

′ 
n 

]
1 

RμI 
� (κI φ0 − ψ 0 ) = − 1 

μI 
d −1 + b ′ 1 + 

N−1 ∑ 

n = −N+1 

[
m 

′ 
1 ,n p n + m 1 ,n p 

′ 
n 

]
(A.24)

o that � (κI φ0 − ψ 0 ) and � (κI φ0 − ψ 0 ) can be calculated as func-

ions of p k for k 
 = 1 and p ′ 
k 

for k 
 = 0, 1 since d −1 and p ′ 0 are

nown as functions of them. 

For k = 0 and considering only the imaginary part one has: 

 = a ′ 0 + b ′ 0 + 

N−1 ∑ 

n = −N+1 

[
m 

′ 
0 ,n p n + m 0 ,n p 

′ 
n 

]
(A.25)

ut from (A.8) one has a ′ 
0 

= 

κI +1 
μI 

� (φ1 ) so: 

κI + 1 

μI 

� (φ1 ) = −b ′ 0 −
N−1 ∑ 

n = −N+1 

[
m 

′ 
0 ,n p n + m 0 ,n p 

′ 
n 

]
(A.26)

o that � ( φ1 ) can be calculated as a function of p k for k 
 = 1 and

p ′ 
k 

for k 
 = 0, 1 for the same reason as previously. 

Finally, let us substitute (A.18) in (A.22) : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l k,k d k = a k + b k + 

N−1 ∑ 

n = −N+1 

(m k,n + 

m 

′ 
k, 0 

g 0 , 0 
g ′ 0 ,n ) p n 

+ 

∑ 

n 
 =0 

( 
m 

′ 
k, 0 

g 0 , 0 
g 0 ,n − m 

′ 
k,n 

) p ′ n 

l k,k d 
′ 
k 

= a ′ 
k 
+ b ′ 

k 
+ 

N−1 ∑ 

n = −N+1 

(m 

′ 
k,n 

− m k, 0 

g 0 , 0 
g ′ 0 ,n ) p n 

+ 

∑ 

n 
 =0 

(m k,n − m k, 0 

g 0 , 0 
g 0 ,n ) p 

′ 
n 

(A.27)

Taking the first line for k 
 = 1 and the second line for k 
 = 0, 1,

ne can write these equations as was previously done introducing

he analogous concatenations ˜ d , ˜ a , ˜ b and ˜ p and the matrices ˜ l and

˜  : 

˜ 
 

˜ d = ˜ a + ̃

 b + ˜ m ˜ p (A.28)

The quantities κI φ0 − ψ 0 and � ( φ1 ) are not part of the system

ny more, and substituting (A.21) yields: 

( ̃  l ˜ g − ˜ m ) ˜ p = ˜ a + ̃

 b (A.29)

nd inverting the matrix yields: 

˜ p = ( ̃  l ˜ g − ˜ m ) −1 ( ̃  a + ̃

 b ) (A.30)

The problem is now completely solved: all the p k for k 
 = 0 and

he p ′ 
k 

for k 
 = 0, 1 are determined, but p ′ 0 is known from (A.18) .

ne can then deduce the d k for k 
 = 0 and the d ′ 
k 

for k 
 = 0, 1 from

A.20) , and then κI φ0 − ψ 0 and � ( φ1 ) from (A.24) . From this we get

 and D , so that one can compute the coefficients φk and ψ k from

11) , and the coefficients αk and βk from (15) . The holomorphic

otentials are then obtained everywhere in the inclusion and in

he matrix, and finally the displacement field and the stress field

re obtained in the inclusion and in the matrix. 
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Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ijsolstr.2017.05.023 
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