| INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES | 卷:67-68 |
| Diffusion-deformation theory for amorphous silicon anodes: The role of plastic deformation on electrochemical performance | |
| Article | |
| Di Leo, Claudio V.1  Rejovitzky, Elisha1  Anand, Lallit1  | |
| [1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA | |
| 关键词: Lithium-ion batteries; Amorphous silicon; Diffusion; Elasticity; Plasticity; | |
| DOI : 10.1016/j.ijsolstr.2015.04.028 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Amorphous silicon (a-Si) is a promising material for anodes in Li-ion batteries due to its increased capacity relative to the current generation of graphite-based anode materials. However, the intercalation of lithium into a-Si induces very large elastic-plastic deformations, including volume changes of approximately 300%. We have formulated and numerically implemented a fully-coupled diffusion-deformation theory, which accounts for transient diffusion of lithium and accompanying large elastic-plastic deformations. The material parameters in the theory have been calibrated to experiments of galvanostatic cycling of a half-cell composed of an a-Si thin-film anode deposited on a quartz substrate, which have been reported in the literature. We show that our calibrated theory satisfactorily reproduces the mechanical response of such an anode - as measured by the changes in curvature of the substrate, as well as the electrochemical response - as measured by the voltage versus state-of-charge (SOC) response. We have applied our numerical simulation capability to model galvanostatic charging of hollow a-Si nanotubes whose exterior walls have been oxidized to prevent outward expansion; such anodes have been recently experimentally-realized in the literature. We show that the results from our numerical simulations are in good agreement with the experimentally-measured voltage versus SOC behavior at various charging rates (C-rates). Through our simulations, we have identified two major effects of plasticity on the electrochemical performance of a-Si anodes: First, for a given voltage cut-off, plasticity enables lithiation of the anode to a higher SOC. This is because plastic flow reduces the stresses generated in the material, and thus reduces the potential required to lithiate the material. Second, plastic deformation accounts for a significant percentage of the energy dissipated during the cycling of the anode at low C-rates. Hence, plasticity can have either (a) a beneficial effect, that is, a higher SOC for a given voltage cut-off; or (b) a detrimental effect, that is significant energy dissipation at low C-rates. (C) 2015 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_ijsolstr_2015_04_028.pdf | 1246KB |
PDF