JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:354 |
Temporal monotonicity of the solutions of some semilinear parabolic equations with fractional diffusion | |
Article; Proceedings Paper | |
Macias, Siegfried1  Villa-Morales, Jose2  | |
[1] Univ Autonoma Aguascalientes, Ctr Ciencias Basicas, Av Univ 940,Ciudad Univ, Aguascalientes 20131, Ags, Mexico | |
[2] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Av Univ 940,Ciudad Univ, Aguascalientes 20131, Ags, Mexico | |
关键词: Temporal monotonicity; Asymptotic behavior; Positive solutions; Semilinear parabolic equations; Fractional diffusion; | |
DOI : 10.1016/j.cam.2018.08.059 | |
来源: Elsevier | |
【 摘 要 】
Suppose that the functions g, rp and* are nonnegative and satisfy suitable regularity conditions. Then, we prove in this work that the parabolic semilinear problem atu(t, x) =.6c,u(t, x) g(x)f(u(t, x)) + co(x), t > 0, x E R, U(0, X) = Ifr(X), X E R, has a unique positive and time -monotone solution. Here, da is the fractional Laplacian with a E (0, 2], and the source term f is a convex function with f (0) = 0. Moreover, using the temporal monotonicity, we show that the elliptic equation /la v(x) = g(x)f(v(x)) <,o(x), x EIS d, with boundary condition u(x) = 0, has a positive solution. We provide also sufficient conditions for the integrability of both solutions. (C) 2018 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2018_08_059.pdf | 445KB | download |