期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:354
Temporal monotonicity of the solutions of some semilinear parabolic equations with fractional diffusion
Article; Proceedings Paper
Macias, Siegfried1  Villa-Morales, Jose2 
[1] Univ Autonoma Aguascalientes, Ctr Ciencias Basicas, Av Univ 940,Ciudad Univ, Aguascalientes 20131, Ags, Mexico
[2] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Av Univ 940,Ciudad Univ, Aguascalientes 20131, Ags, Mexico
关键词: Temporal monotonicity;    Asymptotic behavior;    Positive solutions;    Semilinear parabolic equations;    Fractional diffusion;   
DOI  :  10.1016/j.cam.2018.08.059
来源: Elsevier
PDF
【 摘 要 】

Suppose that the functions g, rp and* are nonnegative and satisfy suitable regularity conditions. Then, we prove in this work that the parabolic semilinear problem atu(t, x) =.6c,u(t, x) g(x)f(u(t, x)) + co(x), t > 0, x E R, U(0, X) = Ifr(X), X E R, has a unique positive and time -monotone solution. Here, da is the fractional Laplacian with a E (0, 2], and the source term f is a convex function with f (0) = 0. Moreover, using the temporal monotonicity, we show that the elliptic equation /la v(x) = g(x)f(v(x)) <,o(x), x EIS d, with boundary condition u(x) = 0, has a positive solution. We provide also sufficient conditions for the integrability of both solutions. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2018_08_059.pdf 445KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次