期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:264
Critical spaces for quasilinear parabolic evolution equations and applications
Article
Pruess, Jan1  Simonett, Gieri2  Wilke, Mathias3 
[1] Martin Luther Univ Halle Wittenberg, Inst Math, Theodor Lieser Str 5, D-06120 Halle, Germany
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37235 USA
[3] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
关键词: Semilinear parabolic equations;    Quasilinear parabolic equations;    Critical spaces;    Navier-Stokes equations;    Vorticity equations;    Scaling invariance;   
DOI  :  10.1016/j.jde.2017.10.010
来源: Elsevier
PDF
【 摘 要 】

We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal L-p-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given. (c) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_10_010.pdf 1685KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次