期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:226
Arnoldi-Tikhonov regularization methods
Article; Proceedings Paper
Lewis, Bryan2  Reichel, Lothar1 
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Rocketcalc LLC, Kent, OH 44240 USA
关键词: Ill-posed problem;    Inverse problem;    Regularization;    Arnoldi decomposition;    Discrepancy principle;   
DOI  :  10.1016/j.cam.2008.05.003
来源: Elsevier
PDF
【 摘 要 】

Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining a partial Lanczos bidiagonalization of the matrix of the given system of equations. This paper explores the possibility of instead computing a partial Arnoldi decomposition of the given matrix. Computed examples illustrate that this approach may require fewer matrix-vector product evaluations and, therefore, less arithmetic work. Moreover, the proposed range-restricted Arnoldi-Tikhonov regularization method does not require the adjoint matrix and, hence, is convenient to use for problems for which the adjoint is difficult to evaluate. (c) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2008_05_003.pdf 815KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次