期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:235
Subspace-restricted singular value decompositions for linear discrete ill-posed problems
Article; Proceedings Paper
Hochstenbach, Michiel E.2  Reichel, Lothar1 
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词: Ill-posed problem;    Inverse problem;    Modified SVD;    TSVD;    SRSVD;    Tikhonov regularization;   
DOI  :  10.1016/j.cam.2010.06.016
来源: Elsevier
PDF
【 摘 要 】

The truncated singular value decomposition is a popular solution method for linear discrete ill-posed problems. These problems are numerically underdetermined. Therefore, it can be beneficial to incorporate information about the desired solution into the solution process. This paper describes a modification of the singular value decomposition that permits a specified linear subspace to be contained in the solution subspace for all truncations. Modifications that allow the range to contain a specified subspace, or that allow both the solution subspace and the range to contain specified subspaces also are described. (C) 2010 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2010_06_016.pdf 658KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:2次