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a b s t r a c t

The truncated singular value decomposition is a popular solutionmethod for linear discrete
ill-posed problems. These problems are numerically underdetermined. Therefore, it can be
beneficial to incorporate information about the desired solution into the solution process.
This paper describes a modification of the singular value decomposition that permits a
specified linear subspace to be contained in the solution subspace for all truncations.
Modifications that allow the range to contain a specified subspace, or that allow both the
solution subspace and the range to contain specified subspaces also are described.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The truncated singular value decomposition is commonly used to solve linear discrete ill-posed problems with matrices
of small to moderate size. The truncated subspace-restricted singular value decomposition of this paper is a modification,
that allows a user to choose subspaces of the domain and range, which can be used in the solution process for all truncations.
Our interest in the truncated subspace-restricted singular value decomposition stems from its applicability to the solution of
linear discrete ill-posed problems. We first describe this application to motivate our modification of the standard truncated
singular value decomposition.

We are concerned with the solution of linear systems of equations

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, (1.1)

with a matrix A of ill-determined rank. Such systems are often referred to as linear discrete ill-posed problems. The singular
values of A cluster at the origin and this makes the matrix severely ill-conditioned. In particular, the matrix may be singular.
We consider (1.1) a least-squares problem in case the system is inconsistent. The right-hand side b is assumed to be
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contaminated by an error e ∈ Rm, which may stem from discretization or measurement inaccuracies. For notational
simplicity, we will assume that m ≥ n; however, the method of this paper, suitably modified, also can be applied when
m < n.

Let b̂ denote the unknown error-free vector associated with b, i.e.,

b = b̂ + e, (1.2)

and assume that the linear system

Ax = b̂ (1.3)

is consistent. We would like to determine the solution x̂ of (1.3) of minimal Euclidean norm. Since the right-hand side b̂ is
not available, we seek to determine an approximation of x̂ by computing an approximate solution of the available linear
system of (1.1). When the linear system (1.1) is of small to moderate size, this is often done with the aid of the Singular
Value Decomposition (SVD) of A,

A = UΣV T . (1.4)

Here U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n are orthogonal matrices, and the singular values are
the diagonal entries of Σ = diag(σ1, σ2, . . . , σn) ∈ Rm×n. They are ordered according to

σ1 ≥ σ2 ≥ · · · ≥ σℓ > σℓ+1 = · · · = σn = 0, ℓ = rank(A); (1.5)

see, e.g., [1] for details on the SVD. Using (1.4), the system (1.1) can be expressed as

Σy = UTb, x = Vy. (1.6)

Let Σk = diag(σ1, σ2, . . . , σk, 0, . . . , 0) be obtained by setting the last n − k diagonal entries of Σ to zero. The Truncated
SVD (TSVD) method replaces Σ by Σk in (1.6) and determines the least-squares solutions yk of minimal Euclidean norm of
the system so obtained. The associated approximate solutions xk of (1.1) are given by

xk = Vyk =

k−
j=1

uT
j b
σj

vj, k = 1, 2, . . . , ℓ. (1.7)

We note that xk ∈ span{v1, v2, . . . , vk} and define x0 = 0. The singular values σj and the Fourier coefficients uT
j b provide

valuable insight into the properties of the linear discrete ill-posed problem (1.1); see, e.g., [2] for a discussion on the
application of the TSVD to linear discrete ill-posed problems.

Let ‖ · ‖ denote the Euclidean vector norm or the associated induced matrix norm, and consider the sequence ηk =

‖xk − x̂‖, k = 0, 1, . . . , ℓ. Generally, the ηk decrease when k increases and k is fairly small. Due to the error e in the right-
hand side b and the ill-conditioning of A, the ηk typically increase rapidly with k when k is large. Let k∗ ≥ 0 be the smallest
index, such that

‖xk∗ − x̂‖ = min
0≤k≤ℓ

‖xk − x̂‖. (1.8)

The index k∗ generally is not explicitly known.
In the computed examples of Section 5, we assume that an estimate δ of the norm of the error e in b is available. The

norm of the residual vectors

rk = b − Axk
is a decreasing function of k, with rk = PN (AT )b for ℓ < k ≤ n, where PN (AT ) denotes the orthogonal projector onto the null
space N (AT ) of AT . The discrepancy principle suggests that the smallest integer k ≥ 0, such that

‖rk‖ ≤ γ δ, (1.9)

be used as an approximation of k∗, where γ > 1 is a user-supplied constant. We denote this integer by kdiscr and the
associated approximation of x̂ by xkdiscr ; see, e.g., [3] for further discussion on the discrepancy principle.

For many linear discrete ill-posed problems (1.1), the approximate solution xkdiscr furnished by TSVD and the discrepancy
principle is a fairly accurate approximation of x̂. However, there are linear discrete ill-posed problems (1.1) for which
this is not the case. The latter situation arises when the subspace span{v1, v2, . . . , vkdiscr} does not contain an accurate
approximation of x̂. A choice of k > kdiscr is often not feasible, since for these k-values the propagated error, due to the
error e in b, generally destroys the accuracy in xk.

Various examples which illustrate that other solution methods may determine approximations of x̂ of higher accuracy
than TSVD can be found in the literature; see, e.g., [4–7]. Further illustrations are provided in Section 5. Here we only note
that the cause for poor accuracy generally is not the choice kdiscr of the truncation index; the difference xk∗ − x̂ is often not
much smaller than xkdiscr − x̂.
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This paper describes modifications of the SVD, such that truncated versions can give more accurate approximations of x̂
than the TSVD. A user may choose a subspace W ⊂ Rn that allows the representation of known important features of x̂. Let
p = dim(W) and assume that p < n. Typically, p is quite small in applications, say, 1 ≤ p ≤ 5. An orthonormal basis of W

makes up the p last columns of the matrix Ṽ of the SVD-like decomposition

A = Ũ S̃Ṽ T , (1.10)

where Ũ ∈ Rm×m and Ṽ ∈ Rn×n are orthogonal matrices. The leading n− p columns of the matrix S̃ ∈ Rm×n form a diagonal
matrix. We refer to (1.10) as a subspace-restricted SVD (SRSVD). We also allow some columns of the matrix Ũ in (1.10) to
be prescribed. Details of these decompositions are described in Section 2.

It is often meaningful to require that
W ∩ N (A) = {0} (1.11)

to avoid that the computed approximate solution of (1.1) contains a significant component in N (A). The linear discrete
ill-posed problems considered in this paper are discretizations of linear compact operator equations. For these kinds of
problems, vectors in N (A) typically represent discretizations of highly oscillatory functions. We are interested in spaces W
that represent slowly varying functions.

Example 1.1. If x̂ is known to model a nearly constant function, then it may be beneficial to let

W = range


1
1
...
1

 (1.12)

be in the solution subspace. �

Example 1.2. Let x̂ be the discretization of a function that can be well approximated by a linear function. Then the SRSVD
with

W = range


1 1
1 2
...

...
1 n


in the solution subspace may yield a more accurate approximations of x̂ than can be determined with the TSVD. �

A variety ofmodifications and extensions of the SVD, among them theGeneralized Singular ValueDecomposition (GSVD),
have been applied to the solution of linear discrete ill-posed problems with the aim of obtaining decompositions that are
more suitable for particular linear discrete ill-posed problems than the SVD; see, e.g., [8,6,7] and the references therein.
The GSVD determines factorizations of the matrices in the pair {A, L}, where A is the matrix in (1.1) and L ∈ R(n−p)×n is
a user-chosen regularization operator with 0 ≤ p < n. The solution subspace determined by the GSVD contains N (L);
see [1,8].

Example 1.3. The bidiagonal matrix

L =


1 −1

1 −1
. . .

. . .

1 −1

 ∈ R(n−1)×n

is a commonly used regularization operator. The solution subspace determined by the GSVD contains N (L), which is given
by (1.12). �

The above example illustrates that we can make the solution subspace determined by the GSVD contain a desired
subspaceW by choosing a regularization operator LwithN (L) = W . This can be achieved in amore straightforwardmanner
with the SRSVD.

The SRSVD of a matrix is determined by computing the SVD of an orthogonal projection of the matrix. A different way
to enforce the solution subspace to contain a user-specified subspace W by initial orthogonal projection is described in [7].
We comment on the differences between these approaches in Section 2.

This paper is organized as follows. Section 2 describes the SRSVD. Application of the SRSVD to Tikhonov regularization is
considered in Section 3 and Section 4 provides theoretical comparisons to othermethods. Computed examples can be found
in Section 5 and Section 6 contains concluding remarks.

The present paper blends linear algebra and signal processing, areas in which Adhemar Bultheel over the years has made
numerous important contributions; see, e.g., [9–12]. It is a pleasure to dedicate this paper to him.
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2. Subspace-restricted singular value decompositions

This section introduces several SRSVDs and discusses their application in the Truncated SRSVD (TSRSVD) method to the
solution of linear discrete ill-posed problems (1.1). Assume that we would like the solution subspace for any truncation to
contain the subspace W of dimension p. Let the columns of the matrix W ∈ Rn×p form an orthonormal basis of W and let
(1.11) hold. Define the orthogonal projectors

PW = WW T , P⊥

W = I − PW ,

where I denotes the identity. Introduce the singular value decomposition

AP⊥

W = ŨΣ̃ Ṽ T , (2.1)

where Ũ ∈ Rm×m and Ṽ ∈ Rn×n are orthogonal matrices, and the singular values are the diagonal entries of Σ̃ = diag
(σ̃1, σ̃2, . . . , σ̃n) ∈ Rm×n, ordered so that

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃ℓ̃ > σ̃ℓ̃+1 = · · · = σ̃n = 0

for some integer ℓ̃, such that

max{0, ℓ − p} ≤ ℓ̃ ≤ min{ℓ, n − p},

where ℓ̃ = 0 when AP⊥

W = O. The lower bound is achieved when the space W is orthogonal to N (A). We may choose the
trailing n × p submatrix of Ṽ to beW , i.e., Ṽ is of the form

Ṽ = [Ṽ1,W ], Ṽ1 ∈ Rn×(n−p). (2.2)

Theorem 2.1. Let thematrices Ũ , Σ̃ , and Ṽ be determined by (2.1) and (2.2). Then thematrix S̃ ∈ Rm×n in the subspace-restricted
singular value decomposition

A = Ũ S̃Ṽ T (2.3)

is of the form

S̃ = [Σ̃1, B̃], (2.4)

where Σ̃1 = diag(σ̃1, σ̃2, . . . , σ̃n−p) is the leading m × (n − p) submatrix of Σ̃ and B̃ = ŨTAW. Moreover,

σj ≥ σ̃j ≥ σj+p, 1 ≤ j ≤ n, (2.5)

where the σj, for 1 ≤ j ≤ n, are the singular values of A, cf. (1.5), and we define σj = 0 for j > n.

Proof. The decomposition (2.3) with S̃ given by (2.4) follows from (2.1) and the fact that σ̃j = 0 for j > n − p. To show
the inequalities (2.5), we observe that the matrices A and AṼ = [AṼ1, AW ] have the same singular values. Moreover, the
matrices AP⊥

W and AP⊥

W Ṽ = [AṼ1,O] have the same singular values. The latter matrix is obtained by replacing the submatrix
AW ∈ Rm×p of AṼ by the zero matrix. The inequalities (2.5) now follow from inequalities for singular values of a submatrix;
see, e.g., [13, Corollary 3.1.3] for a proof. �

Truncation of the decomposition (2.3) can be used to determine approximate solutions of (1.1) similarly aswith the TSVD.
The TSRSVDmethod so obtained proceeds as follows. We may assume that the subspace W is chosen so that the restriction
of A to W is well conditioned, i.e., that the matrix AW has a small to moderate condition number

κ(AW ) =

max
‖y‖=1

‖AWy‖

min
‖y‖=1

‖AWy‖
; (2.6)

if κ(AW ) is large, then we choose a different space W . Since κ(B̃) = κ(AW ), it follows that the columns of B̃ are not nearly
linearly dependent. Moreover, we would like the spaces AW and AW⊥ to be fairly well separated. These requirements
typically are satisfied when the matrix A is the discretization of a compact operator and the space W represents slowly
varying functions. When these conditions on W, AW , and AW⊥ are satisfied, the least-squares problem (2.7) below can be
solved rapidly with the aid of Givens rotation in a straightforward way. Of course, for small matrices A, it may be attractive
to solve (2.7) by computing the SVD of the matrix S̃(k). This approach is more expensive, but no conditions on the spaces
W, AW , and AW⊥ have to be imposed.

Similarly to the representation (1.6) of (1.1) based on (1.4), we have the representation

S̃y = ŨTb, x = Ṽy,
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determined by (2.3). Introduce the truncated versions of the matrix S̃ defined by (2.4),

S̃(k)
= [Σ̃

(k)
1 , B̃], k = 1, 2, . . . , n − p,

where Σ̃
(k)
1 = diag(σ̃1, σ̃2, . . . , σ̃k, 0, . . . , 0) is obtained by setting the last n − p − k diagonal entries of Σ̃1 to zero. Let ỹk

denote the minimal-norm least-squares solution of

min
ỹ∈Rn

‖S̃(k)ỹ − ŨTb‖. (2.7)

Then the associated TSRSVD solutions of (1.1) are

x̃k = Ṽ ỹk, k = 1, 2, . . . , n − p. (2.8)

The discrepancy principle prescribes that we choose k to be the smallest nonnegative integer, such that the associated
residual vector

r̃k = b − Ax̃k

satisfies (1.9). The computations of the ỹk and ‖r̃k‖ can be carried out efficiently for decreasing values of k by applying Givens
rotations.

Instead of prescribing columns of Ṽ in the decomposition (2.3), we may also specify columns of Ũ . The corresponding
decomposition can be derived by replacing A by AT in (2.3). We outline the decomposition. Let the matrix Ŵ ∈ Rm×p̂ have
orthonormal columns and introduce the orthogonal projectors

PŴ = ŴŴ T , P⊥

Ŵ
= I − PŴ .

Let R(Ŵ ) denote the range of Ŵ and assume that

q = dim(R(Ŵ ) ∩ R(A)). (2.9)

Consider the singular value decomposition

P⊥

Ŵ
A = ŨΣ̃ Ṽ T , (2.10)

where the matrices Ũ ∈ Rm×m and Ṽ ∈ Rn×n are orthogonal, and the singular values are the diagonal entries of Σ̃ =

diag(σ̃1, σ̃2, . . . , σ̃n) ∈ Rm×n with

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃ℓ̃ > σ̃ℓ̃+1 = · · · = σ̃n = 0, ℓ̃ = ℓ − q.

The value of ℓ̃ follows from (1.5) and (2.9). Introduce the matrix

Û = [Ũ1, Ŵ , Ũ2], (2.11)

where Ũ1 is the leading m × (n − q) submatrix of Ũ and Ũ2 ∈ Rm×(m−n+q−p̂) has orthonormal columns that are orthogonal
to the columns of the matrices U1 and Ŵ . In particular, R(Ũ2) ⊥ R(A). The following result is analogous to Theorem 2.1
and can be shown in a similar manner.

Theorem 2.2. Assume that (2.9) holds and let the matrices Ũ , Σ̃ , and Ṽ be determined by (2.10) and (2.11). Then the matrix
S̃ ∈ Rm×n in the subspace-restricted singular value decomposition

A = Û S̃Ṽ T (2.12)

is of the form

S̃ =

Σ̃1

B̃
O

 , (2.13)

where Σ̃1 = diag(σ̃1, σ̃2, . . . , σ̃n−q) is the leading (n− q) × n submatrix of Σ̃ , B̃ = Ŵ TAṼ , and O denotes the (m− p̂+ q) × n
zero matrix. Moreover,

σj ≥ σ̃j ≥ σj+p̂, 1 ≤ j ≤ n,

where we let σj = 0 for j > n.
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The TSRSVD method for the solution of (1.1) based on the decomposition (2.12) is analogous to the TSRSVD method
based on (2.3). Specifically, the approximate solution x̃k is given by (2.8) with Ṽ defined by (2.10), and ỹk is the minimal-
norm least-squares solution of (2.7) with Ũ replaced by Û , defined by (2.11). The matrix S̃(k) in (2.7) is given by

S̃(k)
=

Σ̃
(k)
1

B̃
O

 ,

where Σ̃
(k)
1 = diag(σ̃1, σ̃2, . . . , σ̃k, 0, . . . , 0) ∈ R(n−p̂)×n is obtained by setting the last n − p̂ − k diagonal entries of the

matrix Σ̃1 in (2.13) to zero.
The application of the decomposition (2.12) with Ŵ chosen to be an approximation of a normalized denoised version of

bmay be of interest when the first few coefficients uT
j b in the sum (1.7) obtained from the SVD (1.4) are much smaller than

‖b‖.
A decompositionwhich combines the properties of the factorizations (2.3) and (2.12) also can be derived. Let thematrices

W and Ŵ , as well as the projectors P⊥

W and P⊥

Ŵ
, be as above. Introduce the singular value decomposition

P⊥

Ŵ
AP⊥

W = ŨΣ̃ Ṽ T , (2.14)

where the matrices Ũ ∈ Rm×m and Ṽ ∈ Rn×n are orthogonal. The singular values are the diagonal entries of Σ̃ = diag
(σ̃1, σ̃2, . . . , σ̃n) ∈ Rm×n with

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃ℓ̃ > σ̃ℓ̃+1 = · · · = σ̃n = 0.

The matrix Ṽ may be assumed to be of the form (2.2). Define

Û = [Ũ1, Ŵ , Ũ2], (2.15)

where Ũ1 is the leading m × ℓ̃ submatrix of Ũ and Ũ2 ∈ Rm×(m−ℓ̃−p̂) has orthonormal columns that are orthogonal to the
columns of the matrices Ũ1 and Ŵ . Similarly as for the decomposition (2.12), we have ŨT

2 A = O.

Theorem 2.3. Let the matrices Ũ , Σ̃ , Ṽ , and Û be determined by (2.14) and (2.15), and assume that the columns of Ṽ are ordered
according to (2.2). Then the matrix S̃ ∈ Rm×n in the subspace-restricted singular value decomposition

A = Û S̃Ṽ T (2.16)

is of the form

S̃ =

Σ̃1 B̃12

B̃21 B̃22
O O

 , (2.17)

where Σ̃1 is the leading ℓ̃ × (n − p) submatrix of Σ̃ , B̃12 ∈ Rℓ̃×p, B̃21 ∈ Rp̂×(n−p), and B̃22 ∈ Rp̂×p. The last m − ℓ̃ − p̂ rows of
S̃ vanish. Moreover,

σj ≥ σ̃j ≥ σj+p+p̂, 1 ≤ j ≤ n, (2.18)

where σj = 0 for j > n.

Proof. The structure of (2.17) is a consequence of the relation S̃ = ÛTAṼ as well as of the structure (2.15) of Û and (2.2) of
Ṽ . The inequalities (2.18) follow by observing that the matrix S̃ is a modification of Σ̃ of at most rank p + p̂. �

A TSRSVD method based on the decomposition (2.16) is obtained by setting the smallest diagonal entries of the matrix
Σ̃1 in (2.17) to zero.

The computational effort required to compute the subspace-restricted singular value decompositions (2.3), (2.12) and
(2.16) is dominated by the computation of the singular value decompositions (2.1), (2.10) and (2.14), respectively, because
typically the matrices W and Ŵ have few columns, only. Therefore, the computation of the projections of the matrix A in
(2.3), (2.12) and (2.16) is inexpensive when compared to the computation of the SVD.

We conclude this section with some comments on a different technique described in [7] to enforce the solution subspace
to contain a user-specified subspace W = R(W ). Let P⊥

R(AW ) be the orthogonal projector onto the complement of R(AW ).
The approach in [7] is based on first solving

P⊥

R(AW )AP
⊥

Wx = P⊥

R(AW )b
with the aid of the SVD and then updating the computed solution to include solution components in R(W ). We find the
approach of the present paper attractive because of its versatility. We may within the same framework impose that the
solution subspace and/or the range contain chosen subspaces for all truncations. The relation of SRSVD to GSVD is explored
in Section 4. The numerical examples of Section 5 show the accuracy in the computed approximations of x̂ determined by
TSRSVD to compare well with the accuracy of approximants determined by TGSVD.
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3. Tikhonov regularization

One of the most popular approaches to regularization is due to Tikhonov. The simplest form of Tikhonov regularization
replaces the linear discrete ill-posed problem (1.1) by the least-squares problem

min
x∈Rn


‖Ax − b‖2

+ λ ‖x‖2 , (3.1)

where λ > 0 is a regularization parameter. The value of λ determines how sensitive the solution xλ of (3.1) is to the error
in b and how well xλ approximates x̂; see, e.g., [3,14]. The normal equations associated with (3.1) are given by

(ATA + λI) x = ATb. (3.2)

The solution xλ can be easily computed by substituting the SVD (1.4) into (3.1) or (3.2).
Two approaches to use the decomposition (2.3) in Tikhonov regularization suggest themselves. Substituting (2.3) into

(3.2) yields

(S̃T S̃ + λI) y = S̃T ŨTb, y = Ṽ Tx. (3.3)

In actual computations, the solution yλ should be determined by solving a least-squares problem for which (3.3) are the
normal equations.

Alternatively, since the vectors in the chosen subspace W are assumed to represent important features of the solution
and W is chosen so that A is well conditioned on this subspace, we may modify (3.3) so that only the solution component in
Rn

\ W is regularized. This yields the equation
S̃T S̃ + λ

[
In−p O
O O

]
y = S̃T ŨTb, y = Ṽ Tx, (3.4)

where In−p denotes the identity matrix of order n − p. Note that the leading (n − p) × (n − p) principal submatrix of S̃TS̃
is Σ̃T

1 Σ̃1; cf. (2.4). Similarly as for (3.3), the solution yλ of (3.4) should be computed by solving a least-squares problem for
which (3.4) are the normal equations.

4. Relations to singular value decompositions

In the experiments of Section 5, we will observe that the computed TSRSVD solution with respect to the right space
R(W ) is often close to the computed TGSVD solution with respect to the matrix pair {A, I − WW T

}, although the former
often seems to approximate x̂ at least slightly better. If R(W ) is spanned by right singular vectors of A, then the computed
solutions are in fact exactly the same. We will now prove some results that imply this fact. In the following, π denotes a
permutation of the numbers 1, 2, . . . ,m or 1, 2, . . . , n, as appropriate.

Proposition 4.1. Let the prescribed right vectors W = [w1,w2, . . . ,wp] in the SRSVD (see Theorem 2.1) be p right singular
vectors of A. Then the SRSVD A = Ũ S̃Ṽ T can be chosen to be a permuted singular value decomposition: S̃ = diag(σ̃1, σ̃2, . . . , σ̃n),
where there exists a permutation π such that σπ(j) = σ̃j, vπ(j) = ṽj, uπ(j) = ũj, for j = 1, 2, . . . , n.

Proof. Since W is made up of singular vectors, the singular vectors of A(I − WW T ) are the same as of A (or can be selected
to be the same in the case of multiple singular values or in the case p > 1). The singular vectors that define W are (or can
be chosen to be, in case A has zero singular values) the last columns of the singular vector matrix. �

The meaning of Proposition 4.1 is that, for this special choice ofW , the SRSVD differs from the SVD in that for the former
a user may preselect certain singular vectors that are required to be involved in the solution of (1.1).

If we prescribe left singular vectors, i.e., if we let the columns of the matrix Ŵ be left singular vectors of A, then we have
the following analogous result. It can be shown similarly as Proposition 4.1.

Proposition 4.2. Suppose that the prescribed left vectors Ŵ = [ŵ1, ŵ2, . . . , ŵp] in the SRSVD (see Theorem 2.2) are p left
singular vectors of A. Then the SRSVD A = Ũ S̃Ṽ T can be chosen to be a permuted singular value decomposition: S̃ = diag(σ̃1,
. . . , σ̃n), where there exists a permutation π such that σπ(i) = σ̃i, vπ(i) = ṽi, uπ(i) = ũi, for i = 1, 2, . . . ,m.

Finally, we mention that we also can formulate an analogous result for the choice of both right singular vectors W =

[w1,w2, . . . ,wp] and left singular vectors Ŵ = [ŵ1, ŵ2, . . . , ŵq]. The details are notationally quite involved. We therefore
prefer to omit them.

Instead, we now proceed towards the final result of this section: if the columns ofW are right singular vectors of A, then
the TGSVD solutions with respect to the matrix pair {A, I −WW T

} of (1.1) coincides with the TSRSVD solution with respect
to the subspace R(W ). The following lemma can be shown by direct verification.
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Table 5.1
Overview of the relative errors in approximate solutions determined by TSVD, TGSVD, and TSRSVD for Experiments 5.1 and 5.2.

W deriv2 baart

1 t2 [1, t] t2 sin(t)

TSVD 2.94 · 10−1 1.66 · 10−1

TGSVD 1.38 · 10−1 1.64 · 10−1 1.74 · 10−1 2.73 · 10−1 3.43 · 10−3

TSRSVD 1.36 · 10−1 1.34 · 10−1 1.41 · 10−1 6.56 · 10−2 3.43 · 10−3

Lemma 4.3. Let A have the SVD A = UΣV T , and let W = [w1,w2, . . . ,wp] be a subset of right singular vectors of A with
corresponding partial SVD AW = U2Σ2. Let Σ1 be the diagonal matrix containing the remaining singular values in decreasing
order with corresponding left and right singular vectors contained in U1 and V1 (cf. Section 2). Then the pair {A, I − WW T

} has
the GSVD,

A = [U1, U2] diag([Σ1(Σ
2
1 + I)−1/2, Ip]) [V1(Σ

2
1 + I)1/2, WΣ2]

T ,

I − WW T
= [V1, W ] diag([(Σ2

1 + I)−1/2, 0p]) [V1(Σ
2
1 + I)1/2, WΣ2]

T .

Theorem 4.4. Let W = [w1,w2, . . . ,wp] be p right singular vectors of A corresponding to nonzero singular values. Then the
TGSVD solutions of (1.1) corresponding to the matrix pair {A, I −WW T

} are equal to the TSRSVD solutions of (1.1)with respect
to W.

Proof. We use the notations and result of the preceding lemma. Since

[V1(Σ
2
1 + I)1/2, WΣ2]

−T
= [V1(Σ

2
1 + I)−1/2, WΣ−1

2 ],

we have that the TGSVD solution of the pair {A, I − WW T
} to the problem (1.1) is given by (see, e.g., [14])

Vk(Σ
2
k + I)−1/2(Σk(Σ

2
k + I)−1/2)−1UT

k b + WΣ−1
2 UT

2 b, (4.1)

where Σk,Uk, and Vk are truncated versions of Σ1,U1, and V1, respectively.
On the other hand, the TSRSVD solution with special vectorsW satisfies

xk = [Vk W ] yk, yk = argmin
y

‖A [Vk W ]y − b‖.

Since R(A[Vk, W ]) = R([Uk, U2]) and

[Uk, U2]
TA[Vk, W ] =

[
Σk 0
0 Σ2

]
,

we have

VkΣ
−1
k UT

k b + WΣ−1
2 UT

2 b,

from which, in view of (4.1), the result now follows. �

5. Numerical experiments

This section presents a few computed examples which illustrate the performance of the SRSVD. The right-hand sides in
the examples below are contaminated by an error e of relative norm ε, i.e.,

‖e‖/‖b̂‖ = ε. (5.1)

We take ε = 0.01, whichmeans 1% noise. The entries of e are normally distributed pseudorandomnumberswith zeromean,
generated by the MATLAB function randn. They are scaled so that (5.1) holds. The constant γ in the discrepancy principle
(1.9) is set to 1.1 and we let δ = ε ‖b̂‖ in (1.9).

LetW contain user-selected orthonormal columns. The columns ofW play a special role both in the SRSVD as presented
in this paper, and in the GSVD of the matrix pair {A, I − WW T

}. Therefore, in Experiments 5.1 and 5.2 we compare the
TSVD of A, the TGSVD of the pair {A, I −WW T

}, and the SRSVD of Awith specified right vectors given by the columns ofW .
We present results for two well-known examples, deriv2 and baart from [15], of size m = n = 500. Table 5.1 provides an
overview of the relative errors ‖xdiscr − x̂‖/‖x̂‖ for some choices of W . We discuss the details below.

Experiment 5.1. Consider the Fredholm integral equation of the first kind,∫ 1

0
k(s, t)x(t)dt = es + (1 − e)s − 1, 0 ≤ s ≤ 1, (5.2)
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0.15

Fig. 5.1. Experiment 5.1: Exact solution x̂ (continuous curve), approximate solutions using the discrepancy principle as determined by TSVD (dash-dotted
curve), TGSVD (dotted curve), and TSRSVD (dashed curve).

where

k(s, t) =


s (t − 1), s < t,
t (s − 1), s ≥ t.

We discretize the integral equation by a Galerkin method with orthonormal box functions as test and trial functions using
theMATLAB program deriv2 from [15]. This program yields a symmetric indefinitematrix A ∈ R500×500 and a scaled discrete
approximation x̂ ∈ R500 of the solution x(t) = exp(t) of (5.2). The condition number κ(A), defined analogously to (2.6), is
3.0 · 105. Fig. 5.1 shows x̂ (continuous curve). The error-free right-hand side vector is given by b̂ = Ax̂, and the right-hand
side vector b in (1.1) is determined by (1.2) with ε = 1 · 10−2 in (5.1).

We first consider approximants xk of x̂ computed by TSVD. The discrepancy principle (1.9) yields kdiscr = 6. The dash-
dotted curve of Fig. 5.1 displays x6. The relative error in x6 is seen to be quite large; we have ‖x6 − x̂‖/‖x̂‖ = 2.94 · 10−1.
For comparison, we determine k∗ = 13 from Eq. (1.8) and obtain ‖x13 − x̂‖/‖x̂‖ = 2.22 · 10−1. Thus, the error in x13 is not
much smaller than the error in x9. The low accuracy obtained by TSVD combined with the discrepancy principle therefore
does not depend on a failure of the latter, but instead depends on that linear combinations of the first few columns of the
matrix V in (1.4) are not well suited to approximate x̂.

We turn to the TGSVD and TSRSVD methods. If we let W be the ‘‘constant unit vector’’ 1
10

√
5
[1, 1, . . . , 1]T ∈ R500, then

both the TGSVD applied to the pair {A, I − WW T
}, and the TSRSVD give more accurate approximate solutions with relative

errors of 1.38 · 10−1 and 1.36 · 10−1, respectively; both using 5 vectors.
These approximate solutions are quite similar, and suggest that the desired solution x̂might be fairly well approximated

by a parabola. If we apply TGSVD and TSRSVD with

W = range


1
4
...

n2

 , (5.3)

we obtain the dotted (TGSVD) and dashed (TSRSVD) curves of Fig. 5.1. The relative errors are 1.64 · 10−1 and 1.34 · 10−1,
respectively; see also Table 5.1. It is clear that the TSRSVD solution is of better quality. To satisfy the discrepancy principle,
the TGSVD solution uses one extra vector compared to the TSRSVD: 5 (TGSVD) versus 4 (TSRSVD).

If we increase the number of columns ofW , e.g., if we let the columns ofW be an orthonormal basis for the subspace

W = range


1 1 1
1 2 4
...

...
...

1 n n2

 , (5.4)

then both the TGSVD and TSRSVDmethods give very similar excellent approximate solutions with relative error 5.06 ·10−3.
We remark that TGSVD applied to the pair {A, L}, with L the 4-diagonal regularization operator

L =


−1 3 −3 1

−1 3 −3 1
. . .

. . .
. . .

. . .

−1 3 −3 1

 ∈ R(n−3)×n,
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 π

Fig. 5.2. Experiment 5.2: Exact solution x̂ (continuous curve), approximate solutions using the discrepancy principle as determined by TSVD (dash-dotted
curve), TGSVD (dotted curve), and TSRSVD (dashed curve).

which is a scaled approximation of a third derivative operatorwith null space (5.4), yields an approximate solution of similar
quality. �

Experiment 5.2. We discretize the integral equation∫ π

0
exp(s cos(t))x(t) dt = 2

sinh(s)
s

, 0 ≤ s ≤
π

2
,

discussed by Baart [16] by a Galerkin method with piecewise constant test and trial functions using the MATLAB code
baart from [15]. This yields the nonsymmetric matrix A ∈ R500×500 of ill-determined rank. The code also furnishes the
‘‘exact’’ solution x̂, which represents a scaled sine function. We determine the error-free right-hand side b̂ of (1.3) and the
contaminated right-hand side b of (1.1) similarly as in Experiment 5.1.

We first consider approximants xk of x̂ computed by TSVD. The discrepancy principle (1.9) now yields kdiscr = 3. The
dash-dotted curve of Fig. 5.2 displays x3. The relative error in x3 is ‖x3 − x̂‖/‖x̂‖ = 1.66 · 10−1. The value of kdiscr is optimal,
i.e., (1.8) yields k∗ = 3.

Nowwe turn to the TGSVD and TSRSVDmethods for variousW . LetW be the ‘‘constant unit vector’’ 1
10

√
5
[1, 1, . . . , 1]T ∈

R500. Then TGSVD yields the approximate solution x4 with relative error 1.70 · 10−1 and TSRSVD gives the approximate
solution x3 with relative error 1.58 · 10−1. Thus, TSRSVD determines the best approximation of x̂ and TGSVD the worst.

For W the ‘‘constant and linear vectors’’, i.e., the first two columns of (5.4), orthonormalized, TGSVD determines an
approximate solutionwith relative error 1.74·10−1 and TSRSVDgives an approximate solutionwith relative error 1.41·10−1;
see Table 5.1. When we take W as in (5.3), the difference is even larger: the relative errors of TGSVD and TSRSVD are
2.73 · 10−1 and 6.56 · 10−2, respectively. These computed solutions are displayed in Fig. 5.2.

Finally, when we supply a normalization of x̂ as W , i.e., a normalization of the vector generated by the MATLAB com-
mand sin((0:n-1)*pi/n)’, both TGSVD and TSRSVD determine excellent approximations of x̂ with relative errors
3.43 · 10−3. �

Experiment 5.3. Our last experiment is concerned with the restoration of an image, which has been contaminated by
Gaussian blur and noise. Fig. 5.3 shows the original image bultheel represented by an array of 512 × 448 pixels. This image
is too large for direct solution methods. We therefore consider the subpicture eye of 71 × 71 pixels displayed in Fig. 5.4(a).
This image is assumed not to be available. The available blur- and noise-contaminated image is shown in Fig. 5.4(b). The
pixel values, ordered column-wise, determine the right-hand side b ∈ R5041. The blurring operator is represented by the
symmetric block Toeplitz matrix with Toeplitz blocks,

A = (2πσ 2)−1T ⊗ T ,

where T is a 71×71 symmetric banded Toeplitzmatrix, whose first row is given by [exp(-((0:band-1).ˆ2)/(2*sigma
ˆ2)); zeros(1,n-band)], and ⊗ denotes the Kronecker product. The parameter band is the half-bandwidth of the
matrix T and the parameter σ controls the effective width of the underlying Gaussian point spread function

h(x, y) =
1

2πσ 2
exp


−

x2 + y2

2σ 2


,

which models blurring. We chose band = 16 and σ = 1.5. The matrix A so obtained is numerically singular. For further
details on image restoration, see, e.g., [17].
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Fig. 5.3. The 512 × 448 pixel picture bultheel.

a b

c d

Fig. 5.4. Experiment 5.3: Subpicture eye (71 × 71) of bultheel: (a) original; (b) blurred and noised; (c) TSVD restoration; (d) TSRSVD restoration with
‘‘W = [1, t, t2]’’ (see (5.4)).

Fig. 5.4(c) shows the restoration x392 obtained with k = 392 right singular vectors using the TSVDmethod. It has relative
error ‖x392 − x̂‖/‖x̂‖ = 6.81 · 10−2. The restoration x358 obtained with k = 358 right singular vectors using the TSRSVD
method with W given by (5.4) is displayed in Fig. 5.4(d). The relative error 5.23 · 10−2 of x358 is clearly smaller than that of
the TSVD approximation and the restoration looks superior. In particular, Fig. 5.4(d) displays less ‘‘ringing’’ than Fig. 5.4(c).
This example illustrates that it is possible to achieve an improved restoration by including vectors that model ‘‘polynomial
behavior’’ and are not taylored to the problem at hand. �

6. Conclusions

This paper describes a new SVD-type decomposition, the subspace-restricted SVD (SRSVD), which allows a user to
prescribe some of the columns of the U and V matrices of this decomposition. Computed examples illustrate the truncated
version of the SRSVD to determinemore accurate approximate solutions of linear discrete ill-posed problems than the TSVD.
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When W contains an orthonormal basis of user-selected vectors, there are some similarities between the TGSVD of
{A, I − WW T

} and the TSRSVD of Awith respect toW . In some cases the quality of the computed approximate solutions of
(1.1) is about the same, and in certain special cases the computed solutions are (mathematically) identical.

In most examples we carried out, TSRSVD gave at least as accurate approximate solutions as TGSVD, and sometimes
approximate solutions of clearly higher accuracy. In particular, TSRSVD seems to perform better whenW has few columns.
Moreover, the fact that TSRSVD only requires the standard SVD and not the GSVD may be seen as an advantage; cf. also the
remarks in [14, p. 51].
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