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a b s t r a c t

Tikhonov regularization for large-scale linear ill-posed problems is commonly imple-
mented by determining a partial Lanczos bidiagonalization of the matrix of the given sys-
tem of equations. This paper explores the possibility of instead computing a partial Arnoldi
decomposition of the given matrix. Computed examples illustrate that this approach may
require fewer matrix–vector product evaluations and, therefore, less arithmetic work.
Moreover, the proposed range-restricted Arnoldi–Tikhonov regularization method does
not require the adjoint matrix and, hence, is convenient to use for problems for which the
adjoint is difficult to evaluate.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the solution of linear systems of equations

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (1)

with a large square matrix of ill-determined rank. In particular, A is severely ill-conditioned and has many singular values
of different orders of magnitude close to zero; some singular values may vanish.
Linear systems of equations with a matrix of ill-determined rank often are referred to as linear discrete ill-posed

problems. They may be obtained by discretizing linear ill-posed problems, such as Fredholm integral equations of the first
kindwith a smooth kernel. This type of integral equations arises in science and engineeringwhen one seeks to determine the
cause (the solution) of an observed effect represented by the right-hand side b (the data). Since the entries of b are obtained
through observation, they typically are contaminated bymeasurement error and sometimes also by discretization error.We
denote the sum of these errors by e ∈ Rn. Let b̂ ∈ Rn be the unavailable error-free right-hand side associated with b, i.e.,

b = b̂+ e. (2)

We assume the linear system of equations with the unavailable error-free right-hand side,

Ax = b̂, (3)

to be consistent. Let x̂ denote a desired solution of (3), e.g., the solution of minimal Euclidean norm. We seek to determine
an approximation of x̂ by computing an approximate solution of the available linear system of Eq. (1). Due to the severe ill-
conditioning of A and the error e in the right-hand side b, straightforward solution of (1) typically does not yield ameaningful
approximation of x̂.
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In order to be able to determine a meaningful approximation of x̂, one replaces the linear system (1) by a nearby system
that is less sensitive to perturbations of the right-hand side, and considers the solution of the latter system an approximation
of x̂. This replacement is commonly referred to as regularization. The most popular regularization methods are Tikhonov
regularization and truncated iteration; see Engl et al. [13], Groetsch [16], Hanke [17], and Hansen [19] for discussions.
Tikhonov regularization in its simplest form replaces the linear system of Eqs. (1) by the minimization problem

min
x∈Rn

{
‖Ax− b‖2 +

1
µ
‖x‖2

}
, (4)

whereµ > 0 is a regularization parameter. Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the associated
induced matrix norm. The value of µ determines how sensitive the solution xµ of (4) is to the error e in b and how close xµ
is to x̂.
The penalty term 1

µ
‖x‖2 in (4) may be replaced by 1

µ
‖Lx‖2, where the matrix L is referred to as a regularization operator.

Common choices of L are matrices related to finite difference operators or the identity matrix. The method of this paper
requires L to be a squarematrix. A variety of square regularization operators are described by Calvetti et al. [10], Hansen and
Jensen [20], and Morigi et al. [22]. In order to keep our presentation simple, we discuss only regularization with the identity
operator in the present paper, but note that the application of any of the square regularization operators in these references
is quite straightforward.
This paper discusses numerical methods that are applicable when the norm of the error in the right-hand side,

ε = ‖e‖, (5)

or a fairly accurate estimate thereof, is known. The regularization parameter is quite easy to determine by application of
the discrepancy principle in this situation, and this simplifies comparison between different solution methods. However,
we note that the decompositions described in this paper also can be applied when ε is not available.
Solution methods for Tikhonov minimization problems (4) of small size often first compute the singular value

decomposition of A and then determine a suitable value of µ; see, e.g., Engl et al. [13] and Hansen [19]. The present paper
is concerned with solution methods for large Tikhonov minimization problems. We propose to reduce the problem (4) to
a problem of smaller size by application of a few, say ` � n, steps of the Arnoldi process applied to A with initial vector
u1 = Ab/‖Ab‖. This yields the decomposition

AU` = U`+1H̄`, (6)

where U`+1 = [u1, u2, . . . , u`, u`+1] ∈ Rn×(`+1) has orthonormal columns, which span the Krylov subspace

K`(A, Ab) = span{Ab, A2b, . . . , A`b}. (7)

The matrix U` ∈ Rn×` consists of the first ` columns of U`+1. We assume that ` is chosen sufficiently small so that
H̄` ∈ R(`+1)×` is an upper Hessenberg matrix with nonvanishing subdiagonal entries. Then H̄` is of rank `. We refer to
(6) as a range-restricted Arnoldi decomposition, becauseR(U`) ⊂ R(A). Here and elsewhere in this paperR(M) denotes
the range of the matrixM andN (M) denotes its null space.
When the last subdiagonal entry of H̄` vanishes, the Arnoldi process is said to break down. This is a rare event; see [2,4,

5,26] for discussions on this situation.
We seek to determine an approximate solution xµ,` of (4) in the Krylov subspace (7). Substituting x = U`y, y ∈ R`, into

(4) and using (6) yields the reduced minimization problem

min
y∈R`

{
‖H̄`y − UT`+1b‖

2
+
1
µ
‖y‖2

}
, (8)

whose solution we denote by yµ,`. Then

xµ,` = U`yµ,` (9)

is an approximate solution of (4). We refer to this approach to determine an approximate solution of (4), and thereby also
of (1), as the range-restricted Arnoldi–Tikhonov (RRAT) method.
The numerical solution of the reduced minimization problem (8) and the determination of the regularization parameter

µwill be discussed in Section 2. Here we only note that the computation of the decomposition (6) requires the evaluation of
`+ 1 matrix–vector products with the matrix A, see, e.g., Saad [27, Section 6.3] for several implementations of the Arnoldi
process. Adequate solutions of large linear discrete ill-posed problems often can be found in Krylov subspaces (7) of fairly
small dimension; see Section 3 for computed examples. In this situation the dominant computational work for determining
an appropriate value of µ and computing an associated approximate solution xµ,` of (4) is the evaluation of the ` + 1
matrix–vector products required to compute the decomposition (6).
The range-restricted GMRES (RRGMRES) iterative method is a variant of the (standard) GMRES method designed for the

solution of large linear discrete ill-posed problems; see [6,26]. It determines iterates in Krylov subspaces of the form (7); the
`th approximate solution x` satisfies

‖Ax` − b‖ = min
x∈K`(A,Ab)

‖Ax− b‖, ` = 1, 2, 3, . . . , (10)
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with x0 = 0. The iterate x` is computed by solving a reduced minimization, which is obtained by substituting x = U`y into
the right-hand side of (10) and using (6). We compare in Section 3 approximations of x̂ determined by RRAT with iterates
in the same solution subspace computed by RRGMRES. The determination of approximations of x̂ by carrying out suitably
few steps of RRGMRES is an example of regularization by truncated iteration; regularization is achieved by determining an
approximate solution x` of (1) in a Krylov subspace (7) of suitably small dimension `; see, e.g., [7,13,17] for further details
on this approach to regularization.
Many available methods for the solution of large-scale Tikhonov regularization problems (4) are based on the Lanczos

bidiagonalization process instead of the Arnoldi process; see, e.g., Björck [3], Calvetti et al. [8,9], Golub and von Matt [14],
Kilmer and O’Leary [21], O’Leary and Simmons [24], and the references therein. These methods carry out ` steps of Lanczos
bidiagonalization of the matrix A to determine the decompositions

AV` = U`+1C̄`, ATU` = V`CT` , (11)

for a suitable ` > 0. Here the matrices U`+1 ∈ Rn×(`+1) and V` ∈ Rn×` have orthonormal columns, U`+1e1 = b/‖b‖,
U` ∈ Rn×` consists of the ` first columns of U`+1, C̄` ∈ R(`+1)×` is lower bidiagonal, and e1 = [1, 0, . . . , 0]T is the first axis
vector. The columns of the matrix V` form a basis of the Krylov subspace

K`(ATA, ATb) = span{ATb, ATAATb, . . . , (ATA)`−1ATb}, (12)

where we tacitly assume that this space is of dimension `. An approximate solution of the Tikhonov minimization problem
(4) is determined in this subspace. Specifically, one computes a solution of the form x` = V`y` by first substituting this
expression and the left-hand side decomposition (11) into (4), and then solving the reduced least-squares problem so
obtained. We refer to this kind of schemes as Lanczos bidiagonalization-Tikhonov (LBDT) methods.
Each Lanczos bidiagonalization step requires two matrix–vector product evaluations, one with A and one with AT.

Assuming that the space (12) is of dimension `, the construction of an orthogonal basis therefore requires 2`matrix–vector
product evaluations.
Our interest in the RRAT method stems from the fact that for many linear discrete ill-posed problems the spaces (7) and

(12) can be chosen to be of about the same dimension; see, e.g., Examples 3.1 and 3.2 of Section 3. Since the computation
of an orthonormal basis for the space (7) requires about half the number of matrix–vector product evaluations than for the
space (12) of the same dimension, and these evaluations typically constitute the dominant computational effort required
by the methods, Tikhonov regularization based on the Arnoldi process can be cheaper to use than Tikhonov regularization
based on Lanczos bidiagonalization.Moreover, the RRATmethod is attractive for problems forwhichmatrix–vector products
with A are easier to evaluate than matrix–vector products with AT. This situation arises, e.g., when solving large nonlinear
problems by Krylov subspace methods; see [11] for a discussion. It also arises when matrix–vector products are evaluated
by multi-pole methods. However, the purpose of the present paper is to compare the quality of the approximate solutions
and the number of matrix–vector product evaluations required by RRAT, LBDT, and other methods. The computed examples
of Section 3 therefore are chosen so that they allow application of all the methods.
The standard Arnoldi decomposition is of the same form as (6),

AU ′` = U
′

`+1H̄
′

` (13)

with U ′`+1 ∈ Rn×(`+1) having orthonormal columns, U ′` consisting of the first ` columns of U
′

`+1, and H̄
′

` ∈ R(`+1)×`
of upper Hessenberg form. The decomposition (13) differs from the range-restricted Arnoldi decomposition (6) in that
U ′`+1e1 = b/‖b‖. The matrix U ′` satisfies

R(U ′`) = K`(A, b) = span{b, Ab, . . . , A`−1b},

and, generally, R(U ′`) 6⊂ R(A). Thus, typically, the decomposition (13) is not range-restricted. This decomposition is the
basis for the (standard) GMRES method; see [27, Section 6.5]. Substituting

x′µ,` = U
′

`y
′

µ,` (14)

into (4) and using the decomposition (13) yields a reduced Tikhonov minimization problem analogous to (8). With y ′µ,`
the solution of this reduced problem, the vector (14) gives an approximate solution of (4). We refer to this scheme as the
Arnoldi–Tikhonov (AT) method; it has been described in [8]. For some problems the AT method works well, but for others
the presence of the error-contaminated vector b in the solution subspace can cause a faster propagation of the error e into
the computed approximate solution than for the RRAT method. This is illustrated in Section 3.
This paper is organized as follows. Section 2 discusses the determination of the regularization parameter and an

approximate solution of (4) that satisfies the discrepancy principle, and Section 3 presents computed examples. Concluding
remarks can be found in Section 4.
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2. Arnoldi–Tikhonov regularization

The discrepancy b − Axµ associated with the solution xµ of (4) can be used to determine a suitable value of the
regularization parameter µ provided that an estimate ε of the norm of the error e in b is available; cf. (5). Let η > 1 be
a constant, whose size reflects the uncertainty in the estimate ε; if the estimate is accurate, then η is chosen about one;
otherwise a larger value of η is used. The discrepancy principle prescribes that the regularization parameter µ be chosen so
that the discrepancy satisfies

‖b− Axµ‖ = ηε. (15)

It can be shown that for any fixed η > 1 andµ = µ(ε) determined by (15), the solution xµ of (4) satisfies xµ → x̂ as ε ↘ 0;
see, e.g., Engl et al. [13] or Groetsch [16] for proofs in Hilbert space settings.
Introduce the function

φ(µ) = ‖b− Axµ‖2. (16)

The following properties of φ are shown in [9]. In the proposition and elsewhere Ij denotes the j× j identity matrix.

Proposition 2.1. The function (16) allows the representation

φ(µ) = bT(µAAT + In)−2b. (17)

Assume that ATb 6= 0. Then φ is strictly decreasing and convex for µ ≥ 0. The equation

φ(µ) = τ

has a unique solution µτ , such that 0 < µτ <∞, for any τ that satisfies ‖b0‖2 < τ < ‖b‖2, where b0 denotes the orthogonal
projection of b ontoN (AT). In particular, if A is of full rank, then b0 = 0.

Proof. The solution xµ of (4) is given by

xµ =
(
ATA+

1
µ
In

)−1
ATb.

This can be seen from the normal equations associated with theminimization problem (4). Substituting this expression into
(16) and using the identity

In − A(ATA+ µ−1In)−1AT = (µAAT + In)−1 (18)

shows (17). �

Eq. (15) is equivalent to

φ(µ) = η2ε2. (19)

We will assume that

‖b0‖ < η‖e‖ < ‖b‖

holds, where b0 is defined in Proposition 2.1. Then it follows from the proposition that Eq. (19) has a unique positive bounded
solution.
We turn to the computation of the solution of the reduced minimization problem (8) for a fixed positive value of µ. This

minimization problem can be expressed in the form

min
y∈R`

∥∥∥∥[µ1/2H̄`I`

]
y −

[
µ1/2UT`+1b

0

]∥∥∥∥ . (20)

We evaluate the solution yµ,` by applying a judiciously chosen sequence of Givens rotations to bring the matrix in (20)
into upper triangular form, followed by back substitution. The computation of yµ,` in this manner requiresO(`3) arithmetic
floating point operations.Moreover, it avoids the solution of the normal equations associatedwith theminimizationproblem
(8). This is advantageous because the matrix of the normal equations, µH̄T` H̄` + I`, has a larger condition number than the
matrix in (20). Therefore the solution of the least-squares problem may yield computed solutions of higher accuracy than
the solution of the normal equations; see, e.g., Golub and Wilkinson [15] for discussions. A related solution method, also
based on the application of Givens rotations for the case when thematrix H̄` is tridiagonal has been described by Eldén [12].
Having determined the solution yµ,` of (20), we obtain an associated approximate solution of (4) from (9).
We determine the regularization parameter µ by application of the discrepancy principle to the discrepancy b − Axµ,`

associated with xµ,`, i.e., we choose µ so that

‖b− Axµ,`‖ = ηε. (21)
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In order to see when this is possible, we introduce, analogously to (16), the function

φ`(µ) = ‖b− Axµ,`‖2, (22)

where xµ,` is given by (9) with U` determined by (6) and yµ,` the solution of (20). Throughout this section, we assume that
` < n is small enough so that the matrix H̄` is of full rank. Thus, we would like to solve the equation

φ`(µ) = η
2ε2. (23)

The following theorem discusses some properties of this equation.

Theorem 2.1. The function (22) allows the representation

φ`(µ) = bTU`+1(µH̄`H̄T` + I`+1)
−2UT`+1b+ ‖(In − U`+1U

T
`+1)b‖

2, (24)

where the matrices H̄` and U`+1 are defined by (6). Assume that Ab 6= 0 and H̄T`U
T
`+1b 6= 0. Then φ` is strictly decreasing and

convex for µ ≥ 0 with φ`(0) = ‖b‖2. Moreover, the equation

φ`(µ) = τ (25)

has a unique solution µτ ,`, such that 0 < µτ ,` <∞, for any τ with

‖PN (H̄T
`
)U
T
`+1b‖

2
+ ‖(In − U`+1UT`+1)b‖

2 < τ < ‖b‖2, (26)

where PN (H̄T
`
) denotes the orthogonal projector ontoN (H̄T` ).

Proof. If Ab = 0, then we cannot start the Arnoldi process. We therefore have to rule out this case. Substituting (9) into (22)
and using that In − U`+1UT`+1 is an orthogonal projector onto the complement ofR(U`+1) yields

φ`(µ) = ‖UT`+1b− H̄`yµ,`‖
2
+ ‖(In − U`+1UT`+1)b‖

2. (27)

The solution of the minimization problem (8) is given by

yµ,` =
(
H̄T` H̄` +

1
µ
I`

)−1
H̄T`U

T
`+1b,

and substitution into (27), using the identity (18) with A replaced by H̄`, yields (24).
The matrix H̄`H̄T` is positive semidefinite. Therefore it follows from the representation (24) that φ` is convex and

decreasing for µ ≥ 0 with

φ`(0) = bTU`+1UT`+1b+ ‖(In − U`+1U
T
`+1)b‖

2
= ‖b‖2.

In order to show that φ` is strictly decreasing, we have to make sure that the first term in (24) depends on µ. Since by
assumption H̄` is of full rank, the matrix H̄`H̄T` has precisely one vanishing eigenvalue. Expansion of (µH̄`H̄

T
` + I`+1)

−1 into
a geometric series for small µ > 0 shows that we have to require that UT`+1b 6∈ N (H̄T` ).
Substituting the spectral factorization of H̄`H̄T` into the first term of (24) yields

lim
µ→∞

φ`(µ) = ‖PN (H̄T
`
)U
T
`+1b‖

2
+ ‖(In − U`+1UT`+1)b‖

2. (28)

This establishes the lower bound in (26) and completes the proof. �

The condition UT`+1b 6∈ N (H̄`) is satisfied for most linear discrete ill-posed problems. However, there are combinations
of A and b for which the condition is violated and the RRAT method cannot be applied.

Example 2.1. Let A ∈ Rn×n be the circulant downshift matrix, i.e., the subdiagonal entries of A as well as the (1, n)-entry
are one and all other entries are zero. Let b = e1. Then the matrix U` in the Arnoldi decomposition (6) consists of the first `
columns of A for any 1 ≤ ` < n. Hence, UT`b = 0. �

We can establish a connection between the RRAT and RRGMRES methods. An analogous connection holds between the AT
and GMRES methods.

Corollary 2.1. Let x` be the `th iterate determined by RRGMRES applied to (1) with initial iterate x0 = 0. Then

‖Ax` − b‖2 = φ`(∞).
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Proof. Substituting the decomposition (6) into the minimization problem (10) yields

‖Ax` − b‖2 = min
y∈R`
‖U`+1H̄`y − b‖2

= min
y∈R`
‖H̄`y − UT`+1b‖

2
+ ‖(In − U`+1UT`+1)b‖

2. (29)

Letting µ→∞ in the reduced Tikhonov minimization problem (8) and comparing with (29) shows that

x` = lim
µ→∞

xµ,`,

where xµ,` is defined by (9). The corollary now follows from (22). �

Assume that τ = η2ε2 satisfies the bounds (26). Then Eq. (23) has a unique solution 0 < µ` <∞. We determineµ` with
a zero-finder, such as Newton’smethod or the cubically convergent zero-finder described in [25]. Newton’smethod requires
that values of φ` and its first derivative with respect to µ be computed at approximations µ

(j)
` of µ` for j = 0, 1, 2, . . .; the

cubically convergent zero-finder in [25] in addition demands the values of the second derivative at these points.
We first discuss the evaluation of φ`(µ). The rightmost term in (24) can be computed as

γ` = bTb−
`+1∑
j=1

(uTj b)
2. (30)

In order to evaluate the other term in (24), introduce

zµ,` = (µH̄`H̄T` + I`+1)
−1UT`+1b.

Then

φ`(µ) = zTµ,`zµ,` + γ`.
We compute the vector zµ,` by solving the least-squares problem

min
z∈R`+1

∥∥∥∥[µ1/2H̄T`I`+1

]
z −

[
0

UT`+1b

]∥∥∥∥ . (31)

This requires O(`3) arithmetic floating point operations for each value of µ, similarly as the solution of the least-squares
problem (20). The evaluation of γ` is independent of µ.
The derivative-values can be determined similarly. We have

φ′`(µ) = −2 z
T
µ,`wµ,`, φ′′` (µ) = 6w

T
µ,`wµ,`,

where

wµ,` = (µH̄`H̄T` + I`+1)
−1H̄`H̄T` zµ,`.

Hence, we may compute wµ,` by solving a least-squares problem analogous to (31) with the vector UT`+1b replaced by
H̄`H̄T` zµ,`. Another approach to the evaluation of the derivatives of φ`, which is somewhat cheaper when ` is large, is
described in [25].
We would like to avoid that approximations µ(j)` of µ` determined by the zero-finder are significantly larger than µ`,

because the condition number of the matrix in (31) grows monotonically with µ. Since typically no positive lower bound
for the solutionµ` of (23) is available, we use the initial valueµ

(0)
` = 0 in the numerical examples of Section 3 and note that

φ`(0) = ‖b‖2, φ′`(0) = −2 ‖H̄
T
`U
T
`+1b‖

2, φ′′` (0) = 6 ‖H̄`H̄
T
`U
T
`+1b‖

2.

Corollary 2.2. Assume that the range-restricted Arnoldi process (6) breaks down at step k. Then the sequence {s`}k`=0 defined by

s0 = ‖b‖2,

s` = ‖PN (H̄T
`
)U
T
`+1b‖

2
+ ‖(In − U`+1UT`+1)b‖

2, 0 < ` < k, (32)

sk = 0,

is decreasing.

Proof. It follows from the proof of Theorem 2.1, and specifically from (28), that s` = φ`(∞) for 1 ≤ ` < k. In view of
Corollary 2.1, the s` are the square of the norm of the discrepancy associatedwith the `th iterate x` determined by RRGMRES
applied to (1) with initial iterate x0 = 0. It follows from (10) and the nesting K`−1(A, Ab) ⊂ K`(A, Ab) that s`−1 ≥ s` for
1 ≤ ` < k, where we define K0(A, Ab) = {0}.
When A is nonsingular, it follows from [2, Theorem 2.3] that the discrepancy vanishes at breakdown. For A singular, this

may not be the case. �
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Corollary 2.2 allows us to discuss the selection of ` in (8). When determining the regularization parameter by solving
(23), the minimum number of Arnoldi steps that allows a solution is the smallest index `, such that s` < η2ε2. To simplify
the computations, we ignore the first term in (32) and let `min be the smallest integer such that

γ` < η2ε2, (33)

where γ` is defined by (30). We refer to `min as the smallest number of Arnoldi steps. Note that γ` can be evaluate quite
inexpensively; when increasing ` by one the only vector-operation required is the evaluation of one inner product. We
remark that in all our computations, Eq. (23) had a solution for ` = `min. However, when this is not the case, we increase
`min.
Numerical experience indicates that for some linear discrete ill-posed problems the quality of the computed solution

may improve by choosing the number of Arnoldi steps ` somewhat larger than `min. The following algorithm summarizes
the computations. The input parameter `+ specifies the number of Arnoldi steps to be carried out in addition to `min.

Algorithm 1 (Range-Restricted Arnoldi–Tikhonov Algorithm).
Input: b ∈ Rm, A ∈ Rm×n, ε, η, `+;
Output: Approximate solution xµ,`, regularization parameter µ`, total number of Arnoldi steps ` = `min + `+;
1. Compute the decomposition (6) with ` = `min + `+, where `min is the smallest value of `, such that (33) holds.
2. Solve Eq. (23) for µ`. If there is no solution because we have ignored the first term in (32), then increase `min by one

and go to 2.
3. Compute the approximate Tikhonov solution xµ,` determined by (9) and (20). �

3. Computed examples

We compare the RRAT method implemented by Algorithm 1 to the Tikhonov regularization methods described in
[8,9] and to RRGMRES when applied to three widely studied linear discrete ill-posed problems. Thematrices in all examples
are of ill-determined rank. We determine a regularization parameter µ that satisfies the discrepancy principle (15) in the
various Tikhonov methods. Iterations with RRGMRES are terminated as soon as the discrepancy (10) falls below ηε, i.e., we
regularize by truncated iteration. We also report results when `+ > 0 additional iterations are carried out.
The evaluation of matrix–vector products with the matrix A in (1) constitutes the bulk of the computational work in

each example. We compare the relative computational efficiency of the methods by counting the number of matrix–vector
product evaluations required to compute each solution. The desired solution x̂ of the error-free system (3) is known for
each example. Let x̃ denote the solution determined by one of the Tikhonovmethods or RRGMRES.We use the relative error
norm, ‖x̃− x̂‖/‖x̂‖, to compare the quality of the approximate solutions determined by the methods. The examples of this
section show that RRAT can out-perform other solution methods both with respect to quality and computational efficiency.
All computations are carried out with GNU/Octave or Matlab with about 16 significant decimal digits. We display two

significant digits in the tabulated results. The norm of the error ε in the first two examples is obtained by selecting a relative
error ε/‖b̂‖ of 1%, which corresponds to a signal-to-noise ratio of about 92 dB. The quantity ε is known accurately in every
example, and we therefore set η to a value close to 1; specifically, we let η = 1.01.

Example 3.1. We consider the inversion of the Laplace transform∫
∞

0
exp(−στ)x̂(σ )dσ = b̂(τ ), τ ≥ 0, (34)

with right-hand side b̂ and solution x̂ given by

b̂(τ ) =
1

τ + 1/2
, x̂(τ ) = exp(−τ/2).

Weuse theMatlab code ilaplace from [18] to discretize the integral equation (34) by a 100-point Gauss–Laguerre quadrature
rule. The equations so obtained are required to be satisfied at the collocation points τj = j/10, 1 ≤ j ≤ 100. This determines
the matrix A ∈ R100×100 and the entries b̂j = b̂(τj) of the right-hand side vector b̂ ∈ R100 of (3). We compute the perturbed
right-hand side b of (1) by adding an ‘‘error vector’’ e ∈ R100 with normally distributed pseudorandom entries with zero
mean and variance chosen so that ε = 4.1×10−2 to b̂; cf. (2). A summary of the computed results is shown in Table 1. Fig. 1
displays the computed approximate solutions produced by RRAT and RRGMRES for `+ = 1, as well as the exact solution x̂.
Table 1 shows RRAT with 1 ≤ `+ ≤ 2 in Algorithm 1 to give much better approximations of x̂ than any of the other

methods in this comparison. This also is illustrated by Fig. 1.
Fig. 2 shows the effect of the regularization parameter µ on the relative error in approximate solutions determined by

RRAT implemented by Algorithm 1 with `+ = 1. The figure also displays the relative error of the RRGMRES solution in
the same Krylov subspace and the orthogonal projection of the solution of the noise-free exact solution x̂ into this Krylov
subspace. The latter is the best possible approximation of x̂ in the subspace. �
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Fig. 1. Example 3.1: The approximate solutions xµ,6 ∈ K6(A, Ab) determined by RRAT with `+ = 1 and x6 ∈ K6(A, Ab) determined by RRGMRES with
`+ = 1 are shown. The jth components of the vectors xµ,6 and x6 approximate the desired solution x̂ at the jth zero of the Laguerre polynomial of degree
100. The vector x̂, referred to as the exact solution, also is displayed.

Table 1
Example 3.1: Computational work and quality of the approximate solutions determined by the RRAT and RRGMRES methods for several values of `+ , the
AT method in [8], and the LBDT method in [9] applied to the solution of a discretization of (34)

Method `+ Matrix–vector Products Relative error in computed approximate solution

RRGMRES 0 6 1.2× 100

RRGMRES 1 7 9.3× 10−1

RRGMRES 2 8 1.0× 100

RRGMRES 3 9 2.8× 100

RRAT 0 6 9.1× 10−1

RRAT 1 7 8.7× 10−2

RRAT 2 8 9.2× 10−2

RRAT 3 9 1.4× 10−1

AT 0 5 8.7× 10−1

LBDT 0 14 1.3× 10−1

Table 2
Example 3.2: Comparison of the RRAT and RRGMRES methods for several values of `+ , the AT method in [8], and the LBDT method in [9] applied to the
solution of a discretization of (35)

Method `+ Matrix–vector products Relative error in computed approximate solution

RRGMRES 0 4 5.6× 10−2

RRGMRES 1 5 1.9× 10−1

RRGMRES 2 6 1.5× 100

RRGMRES 3 7 1.9× 102

RRAT 0 4 4.7× 10−2

RRAT 1 5 1.4× 10−1

RRAT 2 6 1.6× 10−1

RRAT 3 7 1.7× 10−1

AT 0 3 1.2× 10−1

LBDT 0 8 1.6× 10−1

Example 3.2. Consider the Fredholm integral equation of the first kind,∫ π/2

0
κ(σ , τ )x̂(σ )dσ = b̂(τ ), 0 ≤ τ ≤ π, (35)

with κ(σ , τ ) = exp(σ cos(τ )), b̂(τ ) = 2 sinh(τ )/τ , and solution x̂(τ ) = sin(τ ), which is discussed by Baart [1]. We use the
Matlab code baart from [18] to discretize (35) by a Galerkin method with orthonormal box functions to produce the linear
system (3) with A ∈ R200×200 and b̂ ∈ R200. The perturbed right-hand side b in (1) is determined by adding an ‘‘error vector’’
e ∈ R200 with normally distributed pseudorandom components withmean zero and variance such that ε = 2.9×10−2 to b̂.
Table 2 summarizes the computed results. Fig. 3 shows the effect ofµ on the relative error normof approximate solutions

determined by RRAT with `+ = 0. �
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Fig. 2. Example 3.1: The effect of µ on approximate solutions xµ,6 ∈ K6(A, Ab) computed by RRAT with `+ = 1. The discrepancy principle yields the
computed solution marked by ‘‘o’’. The top straight line shows the relative error norm for the RRGMRES solution x6 ∈ K6(A, Ab) obtained with `+ = 1.
The bottom straight line shows the relative error of the best approximation of x̂ in K6(A, Ab).

Fig. 3. Example 3.2: The effect of µ on the approximate solutions xµ,3 ∈ K3(A, Ab) computed by RRAT with `+ = 0. The discrepancy principle yields the
computed solution marked by ‘‘o’’. The top straight line shows the relative error norm for the RRGMRES solution x3 ∈ K3(A, Ab) obtained with `+ = 0.
The bottom straight line shows the relative error of the best approximation of x̂ in K3(A, Ab).

Table 3
Example 3.3: Summary of results for the image restoration problem. RRAT and RRGMRES are applied with `+ = 0

Method Matrix–vector products Relative error in computed approximate solution

RRGMRES 11 4.0× 10−1

RRAT 11 4.1× 10−1

AT 6 6.1× 10−1

LBDT 60 4.1× 10−1

Example 3.3. We consider a two-dimensional image restoration problem from the RestoreTools Matlab package [23]. Our
task is to deblur a 256×256-pixel image of a satellite degraded by spatially invariant blur and additive noise. This restoration
problemwas developed by theUSAir Force Phillips Laboratory, KirtlandAir Force Base, NewMexico. The deblurring problem
can be modeled by a linear system of Eq. (1) with n = 216. The components of the vectors x̂ and b are the lexicographically-
ordered pixel values of the exact and distorted images, respectively. Thematrix A is a discrete blurring operator representing
convolution against a 256 × 256-pixel kernel referred to as a discrete point spread function. We efficiently compute
matrix–vector productswithout explicitly forming A by using the discrete point spread function and the fast discrete Fourier
transform. The ‘‘error vector’’ e ∈ R2

16
has norm ε = 3.3×10−4, which corresponds to a signal-to-noise ratio of about 61dB.

This vector models additive ‘‘noise’’ in the contaminated image represented by b.
Table 3 compares RRAT, RRGMRES, the AT method in [8], and the LBDT method in [9]. Fig. 4 displays the noise- and

blur-free image, the contaminated image, as well as restored images determined by the RRAT, RRGMRES, AT, and LBDT
methods. Since the entries of the computed solutions x̃ represent pixel values, they should be nonnegative. However, the
methods in our comparison produce unconstrained approximate solutions of (1); in particular the vectors x̃ may contain
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Fig. 4. Example 3.3: Clockwise from top left: Exact image represented by x̂, blurred and noisy image represented by b, restored images determined by
RRAT, LBDT, AT, and RRGMRES.

tiny negative entries. We set these entries to zero before display. Each displayed image is scaled for display purposes into
an 8-bit gray-scale range.
Both RRGMRES and RRAT compute approximate solutions that are nearly optimal for this example in the sense that they

are close to the orthogonal projection of the exact solution into the range-restricted subspace. The LBDT method computes
an approximate solution of similar quality, but requires many more matrix–vector product evaluations. The AT method
satisfies the discrepancy principle in a subspace of smaller dimension than RRAT, but produces an approximate solution of
lower quality than the other methods. �

Our numerical experiencewith RRAT indicates that it often is beneficial and seldomdetrimental to set `+ = 1. Recall that
RRAT gives the best approximations of x̂ in Examples 3.1 and 3.2 for `+ = 1. In Example 3.3, RRAT determines computed
solutions of about the same accuracy for `+ = 0 and `+ = 1; we therefore do not report the latter. RRGMRES on the other
hand can yield much worse approximations of x̂ when `+ = 1 than when `+ = 0; cf. Example 3.2. Therefore RRGMRES
generally should not be applied with `+ = 1.

4. Conclusions

A new Tikhonov regularization method based on the range-restricted Arnoldi process is proposed. For some standard
problems, the method compares favorably to Tikhonov regularization based on partial Lanczos bidiagonalization and to
Tikhonov regularization based the standard Arnoldi process. The new method also can yield better approximations of x̂
than RRGMRES.
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