期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:226
A generalized inverse eigenvalue problem in structural dynamic model updating
Article; Proceedings Paper
Yuan, Yong-Xin1,2  Dai, Hua1 
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212003, Peoples R China
关键词: Inverse eigenvalue problem;    Matrix pencil;    Model updating;    Optimal approximation;   
DOI  :  10.1016/j.cam.2008.05.015
来源: Elsevier
PDF
【 摘 要 】

This paper is concerned with the problem of the best approximation for a given matrix pencil under a given spectral constraint and a submatrix pencil constraint. Such a problem arises in structural dynamic model updating. By using the Moore-Penrose generalized inverse and the singular value decomposition (SVD) matrices, the solvability condition and the expression for the solution of the problem are presented. A numerical algorithm for solving the problem is developed. (c) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2008_05_015.pdf 514KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次