期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:308
On solving an isospectral flow
Article
Kaur, Amandeep1 
[1] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
关键词: Isospectral flow;    Eigenvalues;    Magnus expansion;    Lie algebra;    Binary trees;   
DOI  :  10.1016/j.cam.2016.05.033
来源: Elsevier
PDF
【 摘 要 】

In this paper we expand the solution of the matrix ordinary differential system, originally due to Bloch and Iserles, of the form X' = [N, X-2], t >= 0, X(0) = X-0 is an element of Sym(n), N is an element of so(n), where Sym(n) denotes the space of real n x n symmetric matrices and so(n) denotes the Lie algebra of real n x n skew-symmetric matrices. The flow is solved using explicit Magnus expansion, which respects the isospectrality of the system. We represent the terms of expansion as binary rooted trees and deduce an explicit formalism to construct the trees recursively. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2016_05_033.pdf 538KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次