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a b s t r a c t

In this paper we expand the solution of the matrix ordinary differential system, originally
due to Bloch and Iserles, of the form X ′

= [N, X2
], t ≥ 0, X(0) = X0 ∈ Sym(n), N ∈

so(n),where Sym(n) denotes the space of real n×n symmetric matrices and so(n) denotes
the Lie algebra of real n × n skew-symmetric matrices. The flow is solved using explicit
Magnus expansion,which respects the isospectrality of the system.We represent the terms
of expansion as binary rooted trees and deduce an explicit formalism to construct the trees
recursively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Isospectral flows are matrix systems of ordinary differential equations of the form

X ′
= [B(X), X], t ≥ 0, X(0) = X0 ∈ Sym(n), (1)

where B(X) : Sym(n) → so(n). Their main structural feature is that they preserve the eigenvalues of the solution matrix.
Isospectral flows occur in many important applications. First and the best known example is the Toda lattice, a one-
dimensional lattice of particles whose motion is described by a nearest-neighbour interaction of an exponential type. It
can be used to model a wide range of particle systems, ranging from the hard-sphere limit to the atomic case [1,2]. Another
important example is the QR flow. The QR method for finding the eigenvalues of a matrix can be executed as an isospectral
flow at unit intervals. QR flow is the generalization of non-periodic Toda flow. Such flowswere first investigated by Symes [3]
and subsequently in [4–9] and elsewhere.

Other well known examples include eigenvalue problems and inverse eigenvalue problems for symmetric Toeplitz
matrices [10].

Note that if we let B(X) = [N, X], in (1) whereN ∈ Sym(n) then it leads to the double-bracket flows. Double bracket flows
are isospectral flows given by the equations

X ′
= [[N, X], X], t ≥ 0, X(0) = X0 ∈ Sym(n) (2)

whereN ∈ Sym(n). Theywere introduced by Brockett [11] and Chu and Driessel [12]. Double bracket flowswere discretized
and then solved by Iserles by the method of Magnus series [13] and were generalized for more parameters [14]. Also,
methods based on Magnus expansion are proposed for the numerical integration of the double-bracket flow and a bound
on the convergence domain is provided by F. Casas [15].

In this paper we are concerned with the discretization of the matrix differential equation

X ′
= [N, X2

], t ≥ 0, X(0) = X0 ∈ Sym(n), N ∈ so(n). (3)
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The system (3) is known as the Bloch–Iserles (BI) equations. It is isospectral (preserves the eigenvalues of X(t)), is endowed
with a Poisson structure and is integrable as proved by Bloch and Iserles [16]. We discretize this system using a similar
approach, for instance in [13] and [15]. However, solving BI is muchmore complicated since it contains X2 in the expression.

The above system is of interest for a number of reasons. Firstly, we can easily verify that it can be written in the form

X ′
= [N, X]X + X[N, X], t ≥ 0, X(0) = X0 ∈ Sym(n). (4)

For N ∈ so(n) and X ∈ Sym(n), we have [N, X] ∈ Sym(n), therefore it is a special case of a congruent flow

X ′
= A(X)X + XAT (X), t ≥ 0, X(0) = X0 ∈ Sym(n), (5)

where A : Sym(n) → M(n), where M(n) is the set of real n × n matrices, is sufficiently smooth. It is easy to verify that
X(t) = V (t)X0V T (t), where V ′

= A(VX0V T )V , V (0) = I . That means the solution is an outcome of the general linear group
GL(n) acting on Sym(n) by congruence. That proves that the signature of X(t) is constant [17]. Another interesting aspect of
the given set of equations is that they are dual to the generalized rigid body equations

M ′
= [Ω,M], t ≥ 0, M(0) ∈ so(n),

where M = ΩJ + JΩ, J ∈ Sym(n) therefore Ω ∈ so(n) [18].
Also, it is clear that (3) can be rewritten in the form

X ′
= [XN + NX, X], t ≥ 0, X(0) = X0 ∈ Sym(n), N ∈ so(n).

Since XN + NX ∈ so(n) for X ∈ Sym(n), N ∈ so(n), it follows that the system (3) is indeed isospectral.
It is obvious that we can discretize isospectral flows by traditional numerical methods (e.g. Runge–Kutta and multistep),

but, once n ≥ 3, these methods cannot respect the isospectrality of the system, i.e. the numerical solution changes the
eigenvalues [19]. Isospectrality is essential for applications ranging from classical mechanics, like Toda flows and N-body
systems, to linear algebra, like QR flows and inverse eigenvalue problems, so we need to solve (3) by a method that respects
it [20,19,21].

In this paper we solve the given isospectral flow using the method of Magnus series. We show that the solution of (3)
can be represented in the form X(t) = eΩ(t)X0e−Ω(t), where instead of computing X at the first place, we obtain the Taylor
expansion of Ω . Note that this ensures automatically that the numerical solution, being similar to X0, is isospectral. We
will see that the Taylor expansion of Ω can be formed algorithmically from X0 and N and linear combinations of their
commutators and anti-commutators. The goal of this paper is to determine the rules for finding the terms ofΩ to an arbitrary
accuracy. For the solution, first we convert the isospectral flow to a Lie-group flow and then translate it into a Lie-algebraic
equation. This method preserves the isospectrality and gives the desired structure of the solution with large time steps. In
Section 2 we solve the given system of differential equations using the Magnus expansion to obtain the Taylor expansion of
Ω . Finally, in Section 3 the terms are represented by binary rooted trees and an algorithm is formed to construct the next
tree by recursion and to calculate the coefficient of each tree. This lays the foundations to amore general setting, namely the
explicit representation of the solution of (3)whenB(X) canbe represented in a finite ‘‘alphabet’’. The representation as binary
trees is very important because otherwise, as the number of terms in each iteration grows exponentially, the complexity
of manual computation becomes prohibitive. By indexing the terms in the expansion with a subset of binary trees, it is
convenient to derive explicit recurrence relations. Also, it is remarkable that the skew-symmetry and Jacobi identity obeyed
by the commutator help us to reduce the number of terms by cancelling or writing certain terms as the linear combination
of other terms.

2. An expansion of the solution

As stated above, the Bloch–Iserles system can be rewritten in the form

X ′
= [B(X), X], t ≥ 0, X(0) = X0 ∈ Sym(n)

with B(X) = NX + XN , where B(X) : Sym(n) → so(n). This system is seen to be isospectral and it is standard to verify that

X(t) = Q (t)X0Q T (t), t ≥ 0, (6)

where Q (t) ∈ SO(n) is the solution of

Q ′(t) = (Q (t)X0Q T (t)N + NQ (t)X0Q T (t))Q (t), Q (0) = I. (7)

In a similar way as Magnus [22] did for linear equations, our idea is to represent the solution of (7) in the form

Q (t) = eΩ(t),

where

Ω ′
=

∞
0

Br

r!
adr

Ω(eΩX0e−ΩN + NeΩX0e−Ω), Ω(0) = 0. (8)
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Here Bm, m ∈ Z are Bernoulli numbers and adr
Ω is an iterated commutator defined by

ad0
ΩA = A, ad1

ΩA = [Ω, A], ad2
ΩA = [Ω, [Ω, A]], . . . , adm

ΩA = [Ω, adm−1
Ω A],

where [Ω, A] = ΩA − AΩ .
Now, taking Ω(t) =


∞

m=0 Ωmtm gives

Ω ′(t) =

∞
m=0

(m + 1)Ωm+1tm (9)

and this implies
∞

m=0

(m + 1)Ωm+1tm =

∞
r=0

Br

r!
adr

Ω(t)(e
Ω(t)X0e−Ω(t)N + NeΩ(t)X0e−Ω(t)). (10)

Comparing coefficients of t0, t1, t2... we get the values of Ω1, Ω2, Ω3... as follows

Ω1 = NX0 + X0N,

Ω2 =
1
2
(N[Ω1, X0] + [Ω1, X0]N),

Ω3 =
1
3
(N[Ω2, X0] + [Ω2, X0]N) +

1
6
(N[Ω1, [Ω1, X0]] + [Ω1, [Ω1, X0]]N) +

1
6
[Ω2, Ω1].

We denote NX + XN = {X}, thereby rewriting the above values of Ω1, Ω2, Ω3 . . . in a more succinct manner as

Ω1 = {X0}, (11)

Ω2 =
1
2
{[Ω1, X0]},

Ω3 =
1
3
{[Ω2, X0]} +

1
6
{[Ω1, [Ω1, X0]]} +

1
6
[Ω2, Ω1], etc.

Note that X ∈ Sym(n), N ∈ so(n) implies that {X} ∈ so(n). Introducing the curly bracket, i.e. featuring N implicitly in
NX + XN = {X} is important mainly for two reasons. Firstly, this helps to understand the recurrence of the terms in the
expansion, else XN + NX gets convoluted with other terms (either by getting cancelled or by adding up). Later in Section 3,
while defining the structure of binary rooted trees; it prevents from getting bicoloured leaves, for instance, bicoloured leaves
in [13].

Thus

Ω(t) = t{X0} +
1
2
t2{[{X0}, X0]}

+ t3

1
6
{[{[{X0}, X0]}, X0]} +

1
6
{[{X0}, [{X0}, X0]]} +

1
12

[{[{X0}, X0]}, {X0}]


+ · · · . (12)

In next term there are three nested commutators. These are getting increasingly complex with each iteration and it is
clear that the number of such terms is growing exponentially. In this paper we will represent these terms in terms of rooted
trees, similar to the case of double-bracket flows in [13]. This builds upon an idea of Iserles and Nørsett [23] to use binary
rooted trees as a shorthand for expansion terms.

Before we follow the procedure to simplify the above expansion, preliminary error graph of this method and error graph
for eigenvalues of this method, as compared to the MATLAB ode45 solver with built-in parameters, are presented in Figs. 1
and 2 respectively.

In Fig. 1 we display error in the solution of (3) in the interval [0, 1] for a range of different step sizes ∆t . The error plot
is generated by truncating the expansion up to order three and is compared against the theoretically expected error of
O((∆t)3). The experiments were performed on random 25 × 25 matrices. Note that in Fig. 1 we are interested in the case
when ∆t → 0 (asymptotic limit), which corresponds to the left part of the figure. In Fig. 2 we calculate absolute error of
eigenvalues of the twomethods on a logarithmic scale. It is clearly seen that ourmethod preserves the correct eigenvalues to
machine accuracy (we note here that the machine epsilon 10−16 corresponds to relative error; however, we are calculating
the absolute error in the graph). Despite a large time-step in the Magnus method, the error in eigenvalues stays very close
tomachine precision while the solution obtained using ode45 quickly strays away in terms of eigenvalues as time increases.
This favourable behaviour of the Magnus method is to be expected from the principles underlying our approach.

Also, we have computed numerically the solution of the system for random 3×3matrices using Lie groupmethod using
Magnus expansion. In Fig. 3, the phase portraits (X1,2, Xk,l) are displayed for (k, l) = (1, 1), (1, 3), (2, 2), (2, 3), (3, 3), with
random initial condition. It has been proved in [16] that the system is Lie–Poisson and in [24] and [25] that it is integrable.
So, it is clear that the behaviour of the solution displays the regularity and the solution curve lies on invariant tori. This is
an indication of integrable Lie–Poisson structure. Similar behaviour is obtained for other randomly calculated matrices as
well.
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Fig. 1. Global error on logarithmic scale across an interval [0, 1] with different time steps, after truncating the Taylor expansion up to third order terms.

Fig. 2. Error plot showing absolute error of eigenvalues of the two methods on a logarithmic scale.

3. Representation by binary trees

Once we look at the expansion Ω, we note that each term is written in just two ‘letters’ X0 and N , hence belongs to a
free structure generated by them: The matrix N features implicitly in the bracket {Z} = NZ + ZN . Thus we can say that each
term is made of commutators and curly brackets with some expression Z , which itself has been formed from X0 and N . We
attempt to find the expansion of the solution in Taylor series of the form

Ω(t) =

∞
r=1


τ∈Tr

α(τ)Hτ (13)

whereTr is the set of all binary trees of power r: A tree τ is of power r ≥ 1 if r is the greatest integer such thatHτ = O(t r),Hτ

is an expression constructed from X0 and N according to rules implicit in the structure of the tree τ which will be explained
next, and α is a scalar constant. Using rooted trees as a shorthand for expansion terms is an approach introduced by [23],
that leads to a framework that elucidates the structure of individual terms and their relationship. While constructing trees,
we commence by assigning X0 to a single node, i.e. a trivial tree,t X0.



A. Kaur / Journal of Computational and Applied Mathematics 308 (2016) 263–275 267

Fig. 3. The phase portraits (X1,2, Xk,l) for (k, l) = (1, 1), (1, 3), (2, 2), (2, 3), (3, 3), respectively, with a random initial condition. Here by Xk,l we mean
the klth element of the matrix X .

We define a function τ → Hτ from T =


∞

r=1 Tr , a subset of binary rooted trees into n × n matrix functions by letting
H s = X0 and, by induction,

t❅❅ ��

τ1 τ2

 [Hτ1 ,Hτ2 ],

and tτ1 {Hτ1}

where Hτ1 and Hτ2 are already constructed expansion terms. For example,

tt❅��
t tt

⇒ tt❅❅ ��

{X0} X0

⇒ t[{X0}, X0]

⇒ {[{X0}, X0]} ⇒ {[Ω1, X0]}.

In particular (12) can be written as

Ω = tt t +
1
2

tt❅��
t tt

t2 +
1
6

tt❅��
t tt❅❅ �

t tt

t3

+
1
6

tt❅��
t tt

❅��
t tt

t3 +
1
12

❅❅ ��t tttt❅��
t tt

t3 + · · · . (14)

To explore the general rules underlying this correspondence between trees and expansion terms, let us have again a look
at the equation

∞
m=0

(m + 1)Ωm+1tm =

∞
r=0

Br

r!
adr

Ω(t)


eΩ(t)X0e−Ω(t)N + NeΩ(t)X0e−Ω(t)


.
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We know that

eΩX0e−Ω
= AdΩX0 = eadΩX0 =

∞
n=0

1
n!

adn
ΩX0.

Thus
∞

m=0

(m + 1)Ωm+1tm =

∞
r=0

Br

r!
adr

Ω(t)


N

∞
n=0

1
n!

adn
Ω(t)X0 +

∞
n=0

1
n!

adn
Ω(t)X0N



=

∞
r=0

Br

r!
adr

Ω(t)

∞
n=0

1
n!

tadn
Ω(t)X0

=
B0

0!

∞
n=0

1
n!

tadn
Ω(t)X0

+
B1

1!

∞
n=0

1
n!

t❅❅ ��

Ω(t) tadn
Ω(t)X0

+
B2

2!

∞
n=0

1
n!

t❅❅ ��

Ω(t) t❅❅ ��

Ω(t) tadn
Ω(t)X0

+ · · · . (15)

where

adn
Ω(t)X0 = t❅❅ ��

Ω(t) adn−1
Ω(t)X0

.

Clearly, in (15) we see that each tree here can be represented in the form

Ts,n ∋ τ = t❅❅ ��

τ1 t❅❅

τ2 t❅❅ ��

τs tt❅❅ ��

κ1 t❅❅

κ2 t❅❅ ��

κn t

, (16)
where s ∈ {0, 1, 2, 3, . . .}, n ∈ {0, 1, 2, 3, . . .}. Here, the trees τ1, τ2, . . . τs, κ1, κ2, . . . κn have been featured earlier in the
expansion, where τi ∈ Tpi , and κj ∈ Tqj , i = 1, 2, . . . , s, j = 1, 2, . . . , n and p1 +p2 +· · ·+ps + q1 + q2 +· · ·+ qn +1 = r .
For s = 0 (for example, in the first four trees in (14)), the structure of the trees becomes

T0,n ∋ τ = tt❅��
κ1 t❅

κ2 t❅❅ ��
κn t

. (17)
For n = 0 (for example, the fifth tree), this becomes

Ts,0 ∋ τ = t❅❅ ��

τ1 t❅❅

τ2 t❅❅ ��

τs tt
. (18)

It is also possible to deduce the explicit form of the constant α by substituting the value of Ω from (13) in the form of
α(τ) and Hτ in (15) and simplifying it for α(τ). Set

α
 tt

= 1. (19)
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Let τ ∈ Tr , r ∈ N and suppose that α(τi) and α(κj) are known for i = 1, 2, . . . , s, j = 1, 2, . . . , n. Then

α(τ) =
1
r
Bs

s!
1
n!

s
i=1

α(τi)

n
j=i

α(κj), s, n ∈ N, (20)

where Bs is the sth Bernoulli number.
Now we have the general pattern for recursion. Suppose that T1, T2, . . . , Tr−1 are known and also the coefficient α in

these sets is known. To construct Tr we note that every τ is of the form (16) for some s ∈ {0, 1, 2, 3, . . . , r − 1} and
n ∈ {0, 1, 2, 3, . . . , r−1}. For every such s and nwe consider all the partitions p1+p2+· · ·+ps+q1+q2+· · ·+qn+1 = r .
For every partition we construct the tree τ in (16) and use (20) to determine the coefficient α. The trees which correspond
to zero terms would be eliminated. Moreover, some trees can be replaced by linear combinations of other trees. Let us start
from T1.

1. T1: For s = 0, n = 0, we have

τ 1
1 = tt, α(τ 1

1 ) =
1
1

· 1 ·
1
0!

= 1.

2. T2:

(a) For s = 0, n = 1, we can have only one possibility, κ1 = tt

τ 2
1 = tt❅��

t tt
, α(τ 2

1 ) =
1
2

· 1 ·
1
1!

=
1
2
;

(b) For s = 1, n = 0 : τ1 = tt
τ 2
2 =

❅❅ ��t tttt , vanishing tree, discard.

3. T3:

(a) s = 0, n = 1: κ1 = tt❅��
t tt

τ̃ 3
1 = tt❅��

t tt❅❅ �
t tt

, α(τ̃ 3
1 ) =

1
3

· 1 ·
1
1!

·
1
2

=
1
6
;

(b) s = 0, n = 2: κ1 = κ2 = tt

τ̃ 3
2 = tt❅��

t tt
❅��
t tt

, α(τ̃ 3
2 ) =

1
3

· 1 ·
1
2!

· 1 · 1 =
1
6
;

(c) s = 1, n = 1: κ1 = τ1 = tt

τ̃ 3
3 =

❅❅ ��t tttt ❅❅ ��
t tt

, α(τ̃ 3
3 ) =

1
3

·


−

1
2


·
1
1!

· 1 · 1 = −
1
6
;



270 A. Kaur / Journal of Computational and Applied Mathematics 308 (2016) 263–275

(d) s = 1, n = 0: τ1 = tt❅��
t tt

τ̃ 3
4 =

❅❅ ��t tttt❅��
t tt

, α(τ̃ 3
4 ) =

1
3

·


−

1
2


·
1
0!

· 1 ·
1
2

= −
1
12

;

(e) s = 2, n = 0: τ1 = τ2 = tt

τ̃ 3
5 =

❅❅ ��t ttt ❅❅ ��
t tt t

, vanishing tree, discard.

Before we proceed further, let us clean up the set T3. We clearly see that τ̃ 3
3 is nothing but τ̃ 3

4 with opposite sign. The two
trees can be aggregated into τ̃ 3

4 say, with the coefficient replaced by α(τ̃ 3
4 )−α(τ̃ 3

3 ). After trivial rotations (corresponding
to commutation) we obtain three trees in the set T3,

τ 3
1 = tt❅��

t tt❅❅ �
t tt

, α(τ 3
1 ) =

1
6
;

τ 3
2 = tt❅��

t tt
❅��
t tt

, α(τ 3
2 ) =

1
6
;

τ 3
3 =

❅❅ ��t tttt❅��
t tt

, α(τ 3
3 ) =

1
12

.

Using the tree formalism, we are now constructing the next ‘‘generation’’ of terms.

1. T4:

(a) s = 0, n = 1:

i. κ1 = tt❅��
t tt❅❅ �

t tt

: τ̃ 4
1 = tt❅��

t tt❅❅ ��
t tt❅❅ ��

t tt

, α(τ̃ 4
1 ) =

1
24 ;
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ii. κ1 = tt❅��
t tt

❅��
t tt
: τ̃ 4

2 = tt❅��
t tt❅❅ ��

t tt
❅❅ ��
t tt

, α(τ̃ 4
2 ) =

1
24 ;

iii. κ1 =

❅❅ ��t tttt❅��
t tt

: τ̃ 4
3 = tt❅��

t t❅��
t tt t❅��

t tt

, α(τ̃ 4
3 ) =

1
48 ;

(b) s = 0, n = 2:

i. κ1 = tt, κ2 = tt❅��
t tt

:

τ̃ 4
4 = tt❅��

t tt
❅��
t tt❅��

t tt

, α(τ̃ 4
4 ) =

1
16

;

ii. κ1 = tt❅��
t tt

, κ2 = tt :

τ̃ 4
5 = tt❅

❅
�
�

t tt
❅��
t tt

❅❅ �
t tt

, α(τ̃ 4
5 ) =

1
16

;

(c) s = 0, n = 3: κ1 = κ2 = κ3 = tt

τ̃ 4
6 = tt❅��

t tt
❅��
t tt

❅❅ ��
t tt

, α(τ̃ 4
6 ) =

1
24

;

(d) s = 1, n = 0:

i. τ1 = tt❅��
t tt❅❅ �

t tt

: τ̃ 4
7 =

❅❅ ��t tttt❅��
t tt❅❅ �

t tt

, α(τ̃ 4
7 ) = −

1
48 ;
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ii. τ1 = tt❅��
t tt

❅��
t tt
: τ̃ 4

8 =

❅❅ ��t tttt❅��
t tt

❅��
t tt

, α(τ̃ 4
8 ) = −

1
48 ;

iii. τ1 =

❅❅ ��t tttt❅��
t tt

: τ̃ 4
9 =

❅❅ ��t ttt❅❅ ��
tt tt❅❅ ��

t tt
, α(τ̃ 4

9 ) = −
1
96 ;

(e) s = 1, n = 1:

i. τ1 = tt❅��
t tt

, κ1 = tt:
τ̃ 4
10 =

❅❅ ��t tt t❅��
t tt

t❅❅ �
t tt

, vanishing tree, discard.

ii. τ1 = tt, κ1 = tt❅��
t tt

:

τ̃ 4
11 =

❅❅ ��t tttt ❅❅ ��
t tt❅❅ ��

t tt

, α(τ̃ 4
11) = −

1
16

;

(f) s = 1, n = 2: κ1 = κ2 = τ1 = tt:

τ̃ 4
12 =

❅❅ ��t tttt ❅❅ ��
t tt

❅❅ ��
t tt

, α(τ̃ 4
12) = −

1
16

;

(g) s = 2, n = 0:

i. τ1 = tt, τ2 = tt❅��
t tt

:

τ̃ 4
13 =

❅❅ ��t ttt ❅❅ ��
t tt t❅❅ ��

t tt
, α(τ̃ 4

13) =
1
96

;
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ii. τ1 = tt❅��
t tt

, τ2 = tt:
τ̃ 4
14 =

❅❅ ��t tt ❅��
t tt tt❅❅ �

t tt
, vanishing tree, discard.

(h) s = 2, n = 1: κ1 = τ1 = τ2 = tt:

τ̃ 4
15 =

❅❅ ��t ttt ❅❅ ��
t tt t❅❅ ��

t tt
, α(τ̃ 4

15) =
1
48

;

(i) s = 3, n = 0: τ1 = τ2 = τ3 = tt:

τ̃ 4
16 =

❅❅ ��t ttt ❅❅ ��
t tt

❅❅ ��
t tt t

, α(τ̃ 4
16) = 0; vanishing tree, discard.

Three trees are vanishing here. Also, with trivial rotations, few trees get cancelled or merge into other trees obeying the
anti symmetry, for example, τ̃ 4

9 is −τ̃ 4
13 which is also equal to −(−τ̃ 4

15), similarly τ̃ 4
7 is nothing but τ̃ 4

11 with opposite sign
and also τ̃ 4

8 = −τ̃ 4
12 and the trees τ̃ 4

3 , τ̃
4
4 and τ̃ 4

5 satisfy Jacobi identity. Tiding up T4 and translating every tree in terms of
commutators and curly brackets, the Taylor expansion of Ω(t) becomes

Ω(t) = t{X0}

+
1
2
t2{[{X0}, X0]}

+ t3

1
6
{[{[{X0}, X0]}, X0]} +

1
6
{[{X0}, [{X0}, X0]]}

+
1
12

[{[{X0}, X0]}, {X0}]


+ t4


1
24

{[{[{[{X0}, X0]}, X0]}, X0]}

+
1
24

{[{[{X0}, [{X0}, X0]]}, X0]} +
1
24

{[{X0}, [{[{X0}, X0]}, X0]]}

+
1
12

{[{[{X0}, X0]}, [{X0}, X0]]} +
1
24

{[{X0}, [{X0}, [{X0}, X0]]]}

+
1
24

[{[{[{X0}, X0]}, X0]}, {X0}] +
1
24

[{[{X0}, [{X0}, X0]]}, {X0}]


+ · · · .

In explanation of the simplification exercise of the above terms: As we stated that the terms get simplified obeying the
anti symmetry and Jacobi identity; by anti symmetry we mean [A, B] = −[B, A], which is an easy exercise to verify for the
reader, whereas A, B, C are said to satisfy the Jacobi identity if [A, [B, C]]+[B, [C, A]]+[C, [A, B]] = 0. As we translate from
the trees,

τ̃ 4
3 → {[[{[{X0}, X0]}, {X0}], X0]} → {[[Ω2, Ω1], X0]},

τ̃ 4
4 → {[{X0}, [{[{X0}, X0]}, X0]]} → {[Ω1, [Ω2, X0]]},

τ̃ 4
5 → {[{[{X0}, X0]}, [{X0}, X0]]} → {[Ω2, [Ω1, X0]]}
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Fig. 4. Global error on logarithmic scale across an interval [0, 1] with different time steps, after truncating the Taylor expansion up to fourth order terms.

and hence use the Jacobi identity for simplification. Also, one may observe that by co-incidence the tree formation seems
identical with [13] by replacing

❅❅ �
t ❞

→ tt .

It seems quite tempting to introduce such a correspondence between the brackets {X} and [.,N] for the whole tree exercise.
With this replacement we get correct terms up to third order but it gives different values when we reach next generation
terms. The reason for this fact is that the difference between {X} and [.,N] is not only the brackets but the different signs,
+ and −, which appear implicitly in the expression and surely make difference as the complexity increases. Moreover, the
number of independent fourth order terms in [13] is 8, whereas the number of independent terms in Ω4 in BI system is 7.
This explains that the fourth order terms obtained from the two approaches are different. Therefore, no such correspondence
for the tree structure has been found between the two.

We see that once a tree formulation is obtained, translating it into commutators and curly brackets costs less labour as
compared to the complexity of manual computation. After translating the trees into mathematical expressions, we plot the
error graph. Truncating the expansion up to fourth order terms, the error graph of the solution as compared to the MATLAB
ode45 solver with built-in parameters, is shown in Fig. 4. The error plot is generated by comparing against the theoretically
expected error of O((∆t)3) and O((∆t)4). The experiments were performed on random 25 × 25 matrices. Clearly, this plot
shows that the Magnus method is a fourth order method.

In Fig. 5, we generate the error graphs of Ω [3] and Ω [4] obtained by translating the trees and comparing against the
error in explicit Magnus expansion in the appendix (see remark iii) of [26]. In the graph, global error on logarithmic scale
across an interval [0, 1] with different time steps and the solutions are compared against MATLAB ode45 solver with built-
in parameters. There is remarkable overlap in the accuracy between the two approaches. Also, we plot the error curve
displaying the difference between the solution obtained by tree algorithm and explicit Magnus expansion in the appendix
(see remark iii) of [26]. Again, note that in Fig. 5, we are interested in the case when ∆t → 0 (asymptotic limit), which
corresponds to the left part of the figure. It is observed that no variability is seen in the solution of both methods. Similar
dynamics has been captured by the solution with the two approaches, i.e. tree algorithm and explicit Magnus expansion
in the appendix (see remark iii) of [26]. Although both methods are of the same accuracy, it is less expensive to use the
tree algorithm. We see that the number of terms in each iteration grows exponentially and the complexity of manual
computation becomes prohibitive. Using the tree algorithm we reduce the computational cost and deduce the explicit
formalism of the solution.

One thus observes that the BI equations have a number of remarkable properties which motivate us to expand the
equations. It has been seen in Fig. 3 that these equations have Lie–Poisson structure. Fig. 2 shows that the discretization
of the BI equations using Magnus expansion preserves the eigenvalues of the solution matrix. Also, it is observed in Fig. 4
that the Lie group method using Magnus expansion is a fourth order method, here by fourth order we mean the truncation
ofΩ(t) up to the fourth power of t . By employing the shorthand of binary rooted trees for expansion terms, the computation
is made affordable. This also lays a foundation to the explicit representation of the solution of the BI system.
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Fig. 5. Comparison error graphs: tree algorithm and explicit Magnus expansion.
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