会议论文详细信息
11th International Conference on "Mesh methods for boundary-value problems and applications"
Approximation of operator eigenvalue problems in a Hilbert space
Solovyev, S.I.^1
Department of Computational Mathematics, Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, 35 Kremlevskaya Street, Kazan
420008, Russia^1
关键词: Eigenelements;    Eigenvalue problem;    Eigenvalues;    Error estimates;    Infinite dimensional;    Numerical integrations;    Symmetric positive definite;   
Others  :  https://iopscience.iop.org/article/10.1088/1757-899X/158/1/012087/pdf
DOI  :  10.1088/1757-899X/158/1/012087
来源: IOP
PDF
【 摘 要 】

The eigenvalue problem for a compact symmetric positive definite operator in an infinite-dimensional Hilbert space is approximated by an operator eigenvalue problem in finitedimensional subspace. Error estimates for the approximate eigenvalues and eigenelements are established. These results can be applied for investigating the finite element method with numerical integration for differential eigenvalue problems.

【 预 览 】
附件列表
Files Size Format View
Approximation of operator eigenvalue problems in a Hilbert space 913KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:22次