期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:335
On the axisymmetric backward heat equation with non-zero right hand side: Regularization and error estimates
Article
Tra Quoc Khanh1  Ngo Van Hoa2,3 
[1] Ho Chi Minh City Natl Univ, Univ Sci, Fac Math & Comp Sci, 227 Nguyen Van Cu St,Ward 4,Dist 5, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词: Axisymmetric inverse heat problem;    Ill-posed problem;    Nonhomogeneous heat;    Error estimates;   
DOI  :  10.1016/j.cam.2017.11.036
来源: Elsevier
PDF
【 摘 要 】

In this paper we consider the time-inverse problem for the axisymmetric heat equation with non-zero right hand side. This problem is ill-posed: the solution (if it exists) does not depend continuously on the final data. We use a modified quasi-boundary value to regularize the inhomogeneous problem. Numerical results are presented to illustrate the accuracy and efficiency of the method. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2017_11_036.pdf 782KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次