期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:138
On a class of third-order nonlocal Hamiltonian operators
Article; Proceedings Paper
Casati, M.1  Ferapontov, E. V.1  Pavlov, M. V.2  Vitolo, R. F.3,4 
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Russian Acad Sci, Lebedev Phys Inst, Sect Math Phys, Leninskij Prospekt 53, Moscow, Russia
[3] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
[4] Ist Nazl Fis Nucl, Sect Lecce, Lecce, Italy
关键词: Nonlocal Hamiltonian operator;    Monge metric;    Dirac reduction;    Poisson vertex algebra;   
DOI  :  10.1016/j.geomphys.2018.10.018
来源: Elsevier
PDF
【 摘 要 】

Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge metric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2018_10_018.pdf 378KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次