期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS | 卷:138 |
On a class of third-order nonlocal Hamiltonian operators | |
Article; Proceedings Paper | |
Casati, M.1  Ferapontov, E. V.1  Pavlov, M. V.2  Vitolo, R. F.3,4  | |
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England | |
[2] Russian Acad Sci, Lebedev Phys Inst, Sect Math Phys, Leninskij Prospekt 53, Moscow, Russia | |
[3] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy | |
[4] Ist Nazl Fis Nucl, Sect Lecce, Lecce, Italy | |
关键词: Nonlocal Hamiltonian operator; Monge metric; Dirac reduction; Poisson vertex algebra; | |
DOI : 10.1016/j.geomphys.2018.10.018 | |
来源: Elsevier | |
【 摘 要 】
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge metric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained. (C) 2018 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_geomphys_2018_10_018.pdf | 378KB | download |