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Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions
and Jacobi identities for a class of third-order nonlocal operators of differential-geometric
type. Hamiltonian operators within this class are defined by a Monge metric and a skew-
symmetric two-form satisfying a number of differential-geometric constraints. Complete
classification results in the 2-component and 3-component cases are obtained.
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1. Introduction and summary of the main results

Third-order Hamiltonian operators of differential-geometric type were introduced in [7] and thoroughly investigated
in [23–25,1,5]. In the so-called ‘flat coordinates’ u = {u1, . . . , un

} these operators take the form

A = ∂x

(
g ij∂x + c ijku

k
x

)
∂x (1)

where the coefficients g ij(u) and c ijk (u) satisfy a systemof differential constraints coming from the skew-symmetry conditions
and the Jacobi identities. Here i, j, k ∈ {1, . . . , n} where n is the number of components. Hamiltonian operators of
type (1) arise in the theory of equations of associativity of 2-dimensional topological field theory (WDVV equations [6]),
see [9,19,16,17,22]. Projective-geometric aspects of operators (1) were studied in [11,12] based on their correspondence to
Monge metrics and quadratic line complexes. This has lead to complete classification results for the number of components
n ≤ 4. The general theory of Hamiltonian systems of conservation laws associated with operators (1) was developed in [13].

In this paper we investigate a nonlocal generalisation of ansatz (1),

A = ∂x

(
g ij∂x + c ijku

k
x + wi

ku
k
x∂

−1
x w

j
lu

l
x

)
∂x, (2)
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inwhat followswewill always assume the non-degeneracy condition det g ̸= 0. Operator of type (2) appeared in the context
of the Wadati–Konno–Ishikawa (WKI) soliton hierarchy [26,18], see Section 2. Although operator (2) looks analogous to
first-order nonlocal Hamiltonian operators introduced in [8], the underlying geometry is quite different.

Theorem 1. Operator (2) is Hamiltonian if and only if the following conditions are satisfied:

g ij
= g ji,

g ij
,k = c ijk + c jik ,

c ijs g sk
+ ckjs g si

= 0,
c ijs g sk

+ c jks g si
+ ckis g

sj
= 0,

g iswk
s + gkswi

s = 0,
gksw

j
s,l + g js

,l w
k
s − c jks ws

l + ckjs ws
l = 0,

gksc ijs,l + ckjs g si
,l + ckis c

sj
l − c iks c

sj
l + gkswi

sw
j
l = 0.

(3)

Our proof of Theorem1utilises the theory of Poisson vertex algebras, see Section 5. Let us introduce an affine connection∇

with Christoffel’s symbols Γ i
jk = c ijk = gjscsik , cijk = giscsjk where gij is the inverse matrix to g ij. Note that Christoffel’s symbols

are skew-symmetric in low indices. Introducing the skew-symmetric 2-form wij = gisws
j we can rewrite conditions (3) in

the equivalent form with low indices,

∇g = 0,
cijk + cikj = 0,

gij,k + gjk,i + gki,j = 0,
wij + wji = 0,

wij,l − csijwsl = 0,
cnml,k + csmlcsnk + wmlwnk = 0.

(4)

The last relation implies

Rijkl = wilwjk − wikwjl

whereRijkl = gisRs
jkl is the curvature tensor of the connection∇ . Note that ametric g satisfying the equations gij,k+gjk,i+gki,j =

0 is theMongemetric of a quadratic line complex inPn [11,12]. The existing classification of suchmetrics in dimensions 2 and
3 leads to a complete list of 2-component (Theorem 2 of Section 3.1) and 3-component (Theorem 3 of Section 3.2) operators
(2). An important invariant of aMongemetric is its singular variety defined by the equation det g = 0. The singular variety is
an algebraic hypersurface of degree 2n−2 [4]. For local operators (1) the singular variety is known to be a double hypersurface
of degree n − 1 [11]. This is no longer the case for nonlocal operators (2): the corresponding singular varieties are generally
irreducible.

In Theorem 4 of Section 4 we demonstrate that n -component nonlocal operators (2) arise as Dirac reductions of (n+ 1)-
component local operators (1) to hyperplanes in the flat coordinates.

Remark. The first three conditions (3) imply that the coefficients c ijk can be expressed in terms of the metric by the
formula [11]

c ijk =
1
3
gqigpj(gpk,q − gpq,k).

Setting k = j, l = i in the relation Rijkl = wilwjk −wikwjl we obtain Rijji = w2
ij , which determines wij =

√
Rijji uniquely up to a

sign (which can be fixed in a consistent way from the remaining relations up to the overall sign, w → −w). Thus, to specify
Hamiltonian operator (2) it is sufficient to specify the corresponding Monge metric gij.

2. Example

The second flow of the so(3) version of the WKI hierarchy [26] has the form(
p
q

)
t
=

( px
(p2+q2+1)3/2

qx
(p2+q2+1)3/2

)
xx

.

It was demonstrated in [18] that this system possesses a bi-Hamiltonian representation(
p
q

)
t
= A

(
δH/δp
δH/δq

)
= B

(
δG/δp
δG/δq

)
, (5)

with the Hamiltonians

H =

∫ √
p2 + q2 + 1 dx, G =

∫
qpx − pqx√

p2 + q2 + 1(
√
p2 + q2 + 1 + 1)

dx,
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and the Hamiltonian operators

A = ∂2
x

(
∂−1
x − q̃∂−1

x q̃ q̃∂−1
x p̃

p̃∂−1
x q̃ ∂−1

x − p̃∂−1
x p̃

)
∂2
x , B =

(
0 1

−1 0

)
∂2
x ,

where we use the notation

p̃ =
p√

p2 + q2 + 1
, q̃ =

q√
p2 + q2 + 1

.

The operator A can be rewritten in form (2),

A = ∂x ◦ A1 ◦ ∂x,

where

A1 =

(
1 − q̃2 q̃p̃
p̃q̃ 1 − p̃2

)
∂x +

(
−q̃q̃x p̃q̃x
q̃p̃x −p̃p̃x

)
+

(
q̃x∂−1

x q̃x −q̃x∂−1
x p̃x

−p̃x∂−1
x q̃x p̃x∂−1

x p̃x

)
.

For the corresponding Monge metric gij and the skew-symmetric 2-form wij we obtain

gij =

(
q2 + 1 −pq
−pq p2 + 1

)
, wij =

1√
p2 + q2 + 1

(
0 1

−1 0

)
.

3. Classification results

The class of nonlocal operators (2) is invariant under projective transformations of the form

ũi
=

li( u)
l( u)

, g̃ =
g

l4( u)
, w̃ =

w

l2( u)
, (6)

where li, l are linear forms in the flat coordinates. Here g = gij and w = wij are the corresponding Monge metric and
the skew-symmetric 2-form. This symmetry reflects the reciprocal invariance of nonlocal Hamiltonian formalism (2), thus
generalising the analogous result known in the local case [11]. All our classification results are formulated modulo this
equivalence.

Theorem 1 leads to a classification of nonlocal n-component Hamiltonian operators (2) based on normal forms of Monge
metrics in dimensions n = 2 and n = 3 (due to the skew-symmetry of w there exist no nonlocal operators of this type for
n = 1).

3.1. 2-component case

Theorem 2. In the 2-component case, every Monge metric gives rise to a Hamiltonian operator of type (2).

Proof. Every 2-component Monge metric is a quadratic form in the differentials dp, dq and pdq − qdp. Thus, it can be
represented as

g = a(pdq − qdp)2 + 2(pdq − qdp)(bdp + cdq) + αdp2 + 2βdpdq + γ dq2

where a, b, c, α, β, γ are arbitrary constants. Every such metric gives rises to nonlocal operator (2) with

gij =

(
aq2 − 2bq + α −apq + bp − cq + β

−apq + bp − cq + β ap2 + 2cp + γ

)
, wij =

1
√
det g

(
0 1

−1 0

)
.

This expression can be brought to normal form using affine transformations of p and q.

Case a ̸= 0. Using translations of p and qwe can set b = c = 0. The rest depends on whether αγ − β2 is non-zero or not. In
the non-zero case, using the remaining (complex) affine freedomwe can also set a = α = γ = 1, β = 0. This results in the
metric

gij =

(
q2 + 1 −pq
−pq p2 + 1

)
,

which corresponds to the nonlocal Hamiltonian operator A from Section 2. In the degenerate case αγ − β2
= 0 we can

reduce the metric to the form

gij =

(
q2 + 1 −pq
−pq p2

)
,

which gives rise to the local Hamiltonian operator

A = ∂x

(
∂x ∂x

q
p

q
p∂x

q2+1
2p2

∂x + ∂x
q2+1
2p2

)
∂x.
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Case a = 0. Modulo affine transformations one can always assume b = 1, c = 0 (if b = c = 0 we have a constant-
coefficient metric corresponding to a constant-coefficient local operator). Using appropriate translations of p and q one can
set α = β = 0. This results in the Monge metric

gij =

(
−2q p
p γ

)
.

The case γ ̸= 0 corresponds to nonlocal operator (2) with the skew-symmetric 2-form w defined as

wij =
1√

−2γ q − p2

(
0 1

−1 0

)
.

In the case γ = 0 the above metric gives rise to the local Hamiltonian operator

A = ∂x

(
0 ∂x

1
p

1
p∂x

q
p2

∂x + ∂x
q
p2

)
∂x,

which appeared as a Hamiltonian structure of Monge–Ampère equations [19], see also [11]. □

3.2. 3-component case

Every 3-component Monge metric g can be written as a quadratic form in the 6 differentials dui, uiduj
− ujdui, i, j =

1, 2, 3. Let Q denote the 6 × 6 symmetric matrix of this quadratic form. Let P denote the 6 × 6 symmetric matrix
corresponding to the quadratic Plücker relation,

du1(u2du3
− u3du2) + du2(u3du1

− u1du3) + du3(u1du2
− u2du1) = 0.

Monge metrics are classified by their Segre types, that is, Jordan normal forms of the operator QP−1. In what follows we use
the standard notation: thus, Segre type [123] indicates that the operator QP−1 has three Jordan blocks of sizes 1 × 1, 2 × 2
and 3× 3, respectively. Additional round brackets indicate coincidences among the eigenvalues of these blocks: thus, [(12)3]
indicates that the eigenvalue λ1 of the first Jordan block coincides with the eigenvalue λ2 of the second one, etc. We refer
to [15,10] for the list of normal forms of 3-component Monge metrics. All classification results are formulated modulo
projective equivalence (6). In what follows we only present theMongemetric gij and the skew-symmetric 2-formwij (which
uniquely specify the corresponding nonlocal operator (2); note that the 2-form w is defined up to an overall sign). The
theorem below provides a complete description of 3-component nonlocal operators (2) by going through the list of all Segre
types and indicating particular allowed subcases that give rise to nonlocal operators. These are singled out by conditions (4).
In each case we explicitly state the equation of the singular surface, det g = 0, which is a quartic in P3 (possibly, reducible).
It turns out that this quartic degenerates into a double quadric if and only if the operator is local.

Theorem 3. Modulo (complex) projective transformations (6) any nonlocal Hamiltonian operator (2) can be reduced to one of
the following normal forms in the Segre classification:

1. Segre type [114]. Here the only allowed subcase is [(114)] which corresponds to the local operator defined by the metric
g (4) from [11]:

g (4)
ij =

⎛⎝−2u2 u1 0
u1 0 0
0 0 1

⎞⎠ , wij = 0.

We have det g (4)
= −(u1)2, the singular surface is a pair of double planes (one of them at infinity).

2. Segre type [123]. Here the only allowed subcase is [(123)] which corresponds to the local operator defined by the metric
g (5) from [11]:

g (5)
ij =

⎛⎝−2u2 u1 1
u1 1 0
1 0 0

⎞⎠ , wij = 0.

We have det g (5)
= −1, hence the singular surface is the quadruple plane at infinity.

3. Segre type [222]. Here the only allowed subcase is [(222)] which corresponds to the local operator defined by the metric
g (6) from [11]:

g (6)
ij =

(1 0 0
0 1 0
0 0 1

)
, wij = 0.

We have det g (6)
= 1, the singular surface is the quadruple plane at infinity.
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4. Segre type [15]. Here the only allowed subcase is [(15)] which gives rise to the nonlocal operator with the following metric
g and 2-form w:

gij =

⎛⎝ 0 1 2u3

1 −2u3 u2

2u3 u2
−4u1

⎞⎠ ,

w12 = 0, w31 = −
1√

u1 + u2u3 + 2(u3)3
, w23 =

u3√
u1 + u2u3 + 2(u3)3

.

We have det g = 4u1
+ 4u2u3

+ 8(u3)3, the singular surface is a Cayley’s ruled cubic and the plane at infinity.
5. Segre type [24]. Here the only allowed subcase is [(24)], which further splits into two projectively dual subcases. The first

subcase gives rise to the nonlocal operator with the following metric g and 2-form w:

gij =

⎛⎝ 1 0 u3

0 1 0
u3 0 −2u1

⎞⎠ ,

w12 = w23 = 0, w31 =
1√

2u1 + (u3)2
.

We have det g = −2u1
− (u3)2, the singular surface is a quadratic cone and a double plane at infinity. The second subcase

corresponds to

gij =

⎛⎝0 1 0
1 (u3)2 −u2u3

0 −u2u3 1 + (u2)2

⎞⎠ ,

w12 = w31 = 0, w23 =
1√

1 + (u2)2
.

We have det g = −1 − (u2)2, the singular surface is a pair of planes and the double plane at infinity.
6. Segre type [33]. Here the only allowed subcase is [(33)] which gives rise to the nonlocal operator with the following metric

g and 2-form w:

gij =

⎛⎝0 1 1
1 −2u3 u2

+ u3

1 u2
+ u3

−2u2

⎞⎠ ,

w12 = w31 = 0, w23 =
2

√
4u2 + 4u3

.

We have det g = 4(u2
+ u3), the singular surface is a plane and another triple plane at infinity.

7. Segre type [6]. This case does not correspond to any Hamiltonian operator.
8. Segre type [1122]. There are 3 allowed subcases:

• subcase [(11)22] with the additional constraint 2λ1 = λ3 + λ4. This gives rise to the nonlocal operator with the
following metric g and 2-form w:

gij =

⎛⎝ 1 −2λu3 λu2

−2λu3 4 λu1

λu2 λu1 0

⎞⎠ ,

w12 = 0, w23 =
λ2u1

√
det g

, w31 =
λ2u2

√
det g

,

where λ = λ3 − λ4. We have det g = −λ2(u1)2 − 4λ2(u2)2 − 4λ3u1u2u3, the singular surface is a cubic and the
plane at infinity.

• subcase [11(22)] with the additional constraint λ1 + λ2 = 2λ3. This gives rise to the nonlocal operator with the
following metric g and 2-form w:

gij =

⎛⎝1 + λ(u2)2 −λu1u2 0
−λu1u2 4 + λ(u1)2 0

0 0 λ

⎞⎠ ,

w12 =
2λ

√
det g

, w31 = w23 = 0,
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where λ = λ1 − λ2. We have det g = 4λ + λ2(u1)2 + 4λ2(u2)2, the singular surface is a quadratic cone and the
double plane at infinity.

• subcase [1(12)2], with the additional constraint 3λ2 = 2λ4 + λ1. This gives rise to the nonlocal operator with the
following metric g and 2-form w:

gij =

⎛⎝ 1 + λ(u2)2 λ(−u1u2
+ u3) λu2

λ(−u1u2
+ u3) 4 + λ(u1)2 −2λu1

λu2
−2λu1 λ

⎞⎠ ,

w12 =
λ
√

λu1

√
− det g

, w23 = 0, w31 = −
λ
√

λ
√

− det g
,

where λ = λ1 − λ2. We have det g = 4λ − 3λ2(u1)2 − 4λ3(u1u2)2 + λ3(u3
− u1u2)2, the singular surface is an

irreducible quartic.

9. Segre type [1113]. There are 2 essentially different allowed subcases:

• subcase [11(13)], with the additional constraint 2λ3 = λ1 + λ2. This gives rise to the nonlocal operator with the
following metric g and 2-form w:

gij =

⎛⎝2u3
+ λ(u2)2 −1 − λu1u2

−u1

−1 − λu1u2 λ(u1)2 0
−u1 0 λ

⎞⎠ ,

w12 =
λ

√
− det g

, w23 = 0, w31 =
λu1

√
− det g

,

where λ = λ1 − λ2. We have det g = −λ − 2λ2u1u2
+ 2λ2u3(u1)2 − λ(u1)4, the singular surface is an irreducible

quartic.
• subcase [(11)13], with the additional constraint 4λ1 = λ3 + 3λ4. This gives rise to the nonlocal operator with the

following metric g and 2-form w:

gij =

⎛⎝ 2u3
− 2λ(u3)2 −1 − 2λu3

−u1
+ λu2

+ 2λu1u3

−1 − 2λu3
−2λ λu1

−u1
+ λu2

+ 2λu1u3 λu1
−2λ(u1)2

⎞⎠ ,

ω12 = 0, ω23 =

√
3λ2u1

√
− det g

, ω31 =

√
3λ2u2

√
− det g

,

where λ = 2(λ1 − λ4). We have det g = 2λ(λ2(u1)2(u3)2 + 2λ2u1u2u3
+ λ2(u2)2 + 3λ(u1)2u3

− 3λu1u2
+ 3(u1)2),

the singular surface is an irreducible quartic.

10. Segre type [11112]. There are 2 essentially different allowed subcases:

• subcase [111(12)], with the additional constraint λ1 + λ2 + λ3 = 3λ4. This gives rise to the nonlocal operator with
the following metric g and 2-form w:

gij =

⎛⎝1 + λ(u2)2 + µ(u3)2 −λ(u3
+ u1u2) −λu2

− µu1u3

−λ(u3
+ u1u2) λ(u1)2 + µ 2λu1

−λu2
− µu1u3 2λu1 λ + µ(u1)2

⎞⎠ ,

w12 =

√
λ(µ2 − λ2)

det g
u1, w23 = 0, w31 =

√
λ(µ2 − λ2)

det g
,

where λ = λ1 − λ4 and µ = λ3 − λ2. We have

det g = −λ3(u1u2)2 + 2λ3u1u2u3
− λ3(u3)2 − 3λ2(u1)2

+ λµ2(u1u2)2 − 2λµ2u1u2u3
+ λµ2(u3)2 + λµ(u1)4 + λµ + µ2(u1)2,

the singular surface is an irreducible quartic. Note that the additional constraint λ2
= µ2 leads to a local operator.

• subcase [(11)112], with the additional constraint 4λ1 = λ3 + λ4 + 2λ5. This gives rise to the nonlocal operator with
the following metric g and 2-form w:

gij =

⎛⎝ 1 + µ(u3)2 −2βu3 βu2
− µu1u3

−2βu3 µ βu1

βu2
− µu1u3 βu1 µ(u1)2

⎞⎠ ,
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w12 = 0, w23 =

√
β2(β2 − µ2)

det g
u1, w31 =

√
β2(β2 − µ2)

det g
u2,

where µ = λ3 − λ4 and β = 2(λ1 − λ5). We have

det g = 2λ(λ2(u1u3)2 + 2λ2u1u2u3
+ λ2(u2)2 + 3λ(u1)2u3

− 3λu1u2
+ 3(u1)2),

the singular surface is an irreducible quartic. Note that the additional constraint β2
= µ2 leads to a local operator.

11. Segre type [111111]. Up to relabelling of the eigenvalues, there is essentially only one allowed subcase, namely [1111(11)],
with the additional constraint λ1 + λ2 + λ3 + λ4 = 4λ5. This gives rise to the nonlocal operator with the following metric
g and 2-form w:

gij =

⎛⎝a3(u2)2 + a2(u3)2 −a3u1u2
+ αu3

−a2u1u3
+ αu2

−a3u1u2
+ αu3 a2 + a3(u1)2 −2αu1

−a2u1u3
+ αu2

−2αu1 a3 + a2(u1)2

⎞⎠ ,

w12 =

√
(a22 − α2)(a23 − α2)

det g
u3, w23 = 0, w31 =

√
(a22 − α2)(a23 − α2)

det g
u2,

where a2 = λ3 − λ4, a3 = λ1 − λ2 and α = 2λ5 − λ3 − λ4. We have

det g = a22a3(u
1u2)2 + a22a3(u

3)2 + 2a22αu
1u2u3

+ a2a23(u
1u3)2 + a2a23(u

2)2 − a2α2(u1u3)2 − a2α2(u2)2

+ 2a23αu
1u2u3

− a3α2(u1u2)2 − a3α2(u3)2 − 4α3u1u2u3,

the singular surface is an irreducible quartic. Note that the additional constraints α2
2 = α2 or α2

2 = α2 lead to local
operators.

Proof. The proof of Theorem 3 is a direct calculation based on the complete list of 11 Serge types of Monge metrics as
presented, for instance, in [10]. In each case we calculate conditions of Theorem 1 which impose strong constraints on the
parameters of the Monge metrics. In particular, some Segre types (such as [6]) possess no specialisations corresponding to
nonlocal operators at all. Details of these calculations are analogous to those appearing in the classification of local third-
order Hamiltonian operators in [11]. □

4. Nonlocal operators via Dirac reduction

Let us consider an (n + 1)-component local third-order Hamiltonian operator

AIJ
= ∂x

(
GIJ (u)∂x + C IJ

K (u)u
K
x

)
∂x, (7)

represented in the flat coordinates u0, . . . , un. In this section we will calculate the Dirac reduction of this operator to a
hyperplane in the u-coordinates.Without any loss of generality one can assume that this hyperplane is given by the equation
u0

= 0. In what follows we use the following convention for the small and capital indices: i, j, k ∈ {1, . . . , n}, I, J, K ∈

{0, . . . , n}.

Theorem 4. Dirac reduction of local Hamiltonian operator (7) to the hyperplane u0
= 0 is given by nonlocal operator (2)where

gij = Gij, cijk = Cijk, wij =
C0
ij

√

G00
.

Proof. We find it more convenient to work in potential coordinates bK defined as uK
= bKx . In these coordinates operator

(7) takes first-order form,

AIJ
= −GIJ (bx)∂x − C IJ

K (bx)b
K
xx.

Its Dirac reduction Ã to the hyperplane b0 = 0 is defined by the formula

Ãij
= Aij

− Ai0(A00)−1A0j.

Since A00
= −G00∂x − C00

K bKxx and G00
,K = 2C00

K we obtain

A00
= −G00∂x −

1
2
G00

,K b
K
xx = −G00∂x −

1
2
(G00)x = −

√

G00∂x
√

G00,

so that

(A00)−1
= −

1
√
G00

∂−1
x

1
√
G00

.
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Thus,

Ãij
= Aij

+ Ai0 1
√
G00

∂−1
x

1
√
G00

A0j,

where

Aij
= −Gij∂x − C ij

k b
k
xx,

note that b0 = 0. Explicitly, this gives

Ãij
= −Gij∂x − C ij

k b
k
xx + (Gi0∂x + C i0

k bkxx)
1

√
G00

∂−1
x

1
√
G00

(G0j∂x + C0j
k bkxx).

This expression can be rewritten in the form

Ãij
= −g ij∂x − c ijk b

k
xx − wi

kb
k
xx∂

−1
x wj

mb
m
xx

which reduces to (2) in the original variables ui
= bix. Here

g ij
= Gij

−
Gi0G0j

G00 , c ijk = C ij
k −

Gi0C0j
k + C i0

k G0j

G00 +
Gi0G0jG00

,k

2(G00)2
,

wi
k =

1
√
G00

C i0
k −

1
2

Gi0G00
,k

(G00)3/2
.

The formula for g ij precisely means that gij = Gij. The formula for cijk follows from the fact the c is determined by g (see

Remark at the end of Section 1). It remains to prove that the expression for wi
k is equivalent to the formula wij =

C0
ij

√

G00
. Since

C i0
k = Gi0C0

0k + GimC0
mk

we obtain

wi
k =

1
√
G00

[Gi0C0
0k + GimC0

mk] −
1
2

Gi0

(G00)3/2
G00

,k .

Taking into account

Gik
= g ik

+
Gi0G0k

G00

this gives

wi
k =

1
(G00)3/2

[
G00Gi0C0

0k + (G00g im
+ Gi0G0m)C0

mk −
1
2
Gi0G00

,k

]
.

Using the derivative of the inverse matrix,

GIJ
,K = −GIPGPQ ,KGQJ ,

we obtain

G00
,k = −(G00)2G00,k − 2G00G0mG0m,k − G0mG0sgms,k.

Taking into account

C0
0k = G00C00k + G0mCm0k, C0

ik = G00C0ik + G0sCsik,

on simplification we obtain

wi
k =

g imC0
mk

√
G00

,

which is equivalent to the required formula wij =
C0
ij

√

G00
. □

5. Skew-symmetry conditions and Jacobi identities: proof of Theorem 1

The standard way to calculate skew-symmetry conditions and Jacobi identities is based on the Gelfand–Dorfman
approach [14]. In this section we utilise an alternative technique based on the theory of Poisson vertex algebras [2,3] which
gives a completely algebraic approach to local and nonlocal Hamiltonian operators. This is achieved by considering the
differential algebra corresponding, in the theory of the formal calculus of variations, to the densities of local functionals—
usually, the space of differential polynomials or some extension thereof. More precisely, any Poisson vertex algebra defines



M. Casati, E.V. Ferapontov, M.V. Pavlov et al. / Journal of Geometry and Physics 138 (2019) 285–296 293

a Poisson bracket on the space of local functionals and an action of the space of local functionals on the space of their
densities: such objects are, equivalently, defined by Hamiltonian operators. Conversely, a Hamiltonian operator on the space
of densities, either differential or pseudodifferential (under some additional technical hypotheses), defines a Poisson vertex
algebra.

Definition 1. A (nonlocal) Poisson vertex algebra (PVA) is a differential algebra (A, ∂) endowed with a derivation ∂ and a
bilinear operation {·λ·}:A ⊗ A → R((λ−1)) ⊗ A called a (nonlocal) λ bracket, satisfying the following set of properties:

1. {∂ fλg} = −λ{fλg} (left sesquilinearity),
2. {fλ∂g} = (λ + ∂){fλg} (right sesquilinearity),
3. {fλgh} = {fλg}h + {fλh}g (left Leibnitz property),
4. {fgλh} = {fλ+∂h}g + {gλ+∂h}f (right Leibnitz property),
5. {gλf } = −→{f−λ−gg} (PVA skew-symmetry),
6. {fλ{gµh}} − {gµ{fλh}} = {{fλg}λ+µh} (PVA-Jacobi identity).

Let us denote

{fλg} =

∑
s≤S

Cs(f , g)λs.

The expansion of the bracket in λ is bounded by 0 ≤ s ≤ S for local PVAs and is not bounded from below for nonlocal PVAs.
Using the expansion, the expressions on the RHS of Property 4 are to be understood as {fλ+∂g}h =

∑
Cs(f , g)(λ + ∂)sh =∑

s
∑

t Cs
(s
t

)
∂ thλs−t , while the RHS of Property 5 reads →{f−λ−∂g} =

∑
s(−λ − ∂)sCs(f , g).

For the case of nonlocal PVAs, it should be noted that the three terms of PVA-Jacobi identity do not necessarily belong to
the same space, because of the double infinite expansion of the brackets (in terms of (λ, µ), (µ, λ) and (λ, λ+µ), respectively).
A bracket is said to be admissible if all the three terms can be (not uniquely) expanded as

{fλ{gµh}} =

∑
m≤M

∑
n≤N

∑
p≤0

am,n,pλ
mµn(λ + µ)p,

and only admissible brackets can define a nonlocal PVA. We denote the space where the PVA-Jacobi identity of admissible
brackets takes values as Vλ,µ. This space can be decomposed by the total degree d in (λ, µ, λ + µ); finally, elements of each
homogeneous component V (d)

λ,µ can be uniquely expressed in the basis [3]

λiµd−i i ∈ Z,

λd+i(λ + µ)−i i = {1, 2, . . .}.

Themain advantage of PVAs is the existence of a closed and explicit formula to compute theλ bracket of any two elements
of A, in terms of the bracket between the generators of A. Such a formula is called themaster formula and reads

{fλg} =

n∑
i,j=1

∑
l≥0

∑
m≥0

∂g

∂uj
(m)

(λ + ∂)m {ui
λ+∂u

j
} (−λ − ∂)l

∂ f
∂ui

(l)
(8)

where n is the number of generators of A and ui
(l) denotes the lth jet coordinate (∂ui

(l) = ui
(l+1)).

Given a Hamiltonian operator P ij(∂), the λ bracket of the corresponding PVA is obtained by setting the bracket between
the generators equal to the transpose of the symbol of the operator, {ui

λu
j
} = P ji(λ). The strategy of our proof consists in

obtaining the λ bracket corresponding to the candidate Hamiltonian operator of third order, and requiring that itmust satisfy
the skew-symmetry and PVA-Jacobi properties. They are equivalent [2] to the skew-symmetry and the Jacobi identity for
the Poisson bracket defined by the operator—hence the conditions that we derive are the conditions for the operator to be
Hamiltonian.

5.1. The λ bracket

The operator A defined by (2) corresponds to the λ bracket of the form

{ui
λuj

} = (λ + ∂)
(
g jiλ + c jil u

l
x + w

j
lu

l
x(λ + ∂)−1wi

mu
m
x

)
λ. (9)

For convenience, we express the λ bracket (9) in potential coordinates vi
x = ui where it takes the form −{ui

λu
j
} = {vi

λv
j
}
′
=

{vi
λv

j
}L + {vi

λv
j
}N , with

{vi
λv

j
}L = g jiλ + c jik v

k
2x, {vi

λv
j
}N = w

j
lv

l
2x(λ + ∂)−1wi

mvm
2x, (10)

and all the functions depending on vi
x only. We choose to decompose the bracket in its local part {vi

λv
j
}L and its nonlocal part

{vi
λv

j
}N . The nonlocal part is admissible, being a ratio of local λ brackets [3].
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5.2. The skew-symmetry condition

The condition of skew-symmetry is equivalent to the conditions

g ij
= g ji, g ij

,k = c ijk + c jik . (11)

Indeed, for the local part we have

{vi
λv

j
}L = g jiλ + c jik v

k
2x = −→{v

j
−λ−∂v

i
}L = g ijλ + ∂kg ijvk

2x − c ijk v
k
2x.

The two identities are the coefficients of λ and of vk
2x on both sides of the equation.

Thenonlocal part is skew-symmetric by construction. This can be shownby taking the formal series expansion of (λ+∂)−1,
substituting the powers of λ with (−λ − ∂) and taking a double expansion. However this procedure can be replaced by a
much simpler one: in the nonlocal part of the bracket, wj

lv
l
2x(λ + ∂)−1wi

mvm
2x, the total derivative in the parenthesis acts only

on terms on its right-hand side. For shorthand, we can write (λ + ∂)−1 as (λ + ∂ (i))−1 where the superscript means that it
acts on wi

mvm
2x. By doing this, the actual position of the operator (λ + ∂)−1 becomes irrelevant. Thus,

{vi
λv

j
}N =

(
λ + ∂ (i))−1

(
w

j
lv

l
2x

) (
wi

mvm
2x

)
.

On the other hand, the total derivative in the definition of skew-symmetry acts on all the brackets, namely it can be
interpreted as ∂ (i)

+ ∂ (j). This means that

→{v
j
−λ−∂v

i
} =

(
−λ − ∂ (i)

− ∂ (j)
+ ∂ (j))−1

(
w

j
lv

l
2x

) (
wi

mvm
2x

)
,

from which the skew-symmetry easily follows.

5.3. The PVA-Jacobi identity

The PVA-Jacobi identity for the bracket (9) splits into four parts, when taking into account local and nonlocal parts
separately. Let us adopt the shorthand notation

T ijk
P,Q (λ, µ) := {ui

λ{u
j
µu

k
}P }Q ,

J ijk(A, B) := T ijk
A,B(λ, µ) − T jik

A,B(µ, λ) + T kij
A,B(−λ − µ − ∂, λ),

for the terms of the PVA-Jacobi identity, where (P,Q ) denote different λ brackets and the last term in J ijk should be
understood as →{uk

−λ−µ−∂{u
i
λu

j
}A}B, using the skew-symmetry property of the λ bracket. The PVA-Jacobi identity can then

be written as

J ijk(A, A) = 0.

By the linearity of the bracket, the PVA-Jacobi identity reads

J ijk(A, A) = J ijk(L, L) + J ijk(L,N) + J ijk(N, L) + J ijk(N,N) = 0.

The computation of J ijk(L, L) is a straightforward application of the master formula (8).
The expressions involving nonlocal terms live in the space Vλ,µ whose homogeneous components have the basis

(λiµd−i, λd+j(λ+µ)−j) with i ∈ Z and j ∈ Z+. We choose to isolate the nonlocal coefficients of the form P[µ][(λ+∂)−1wi
sv

s
2x],

P[λ][(µ + ∂)−1w
j
sv

s
2x] and wk

s v
s
2x(λ + µ + ∂)−1P[λ] where P[ν] are polynomials in the formal parameter ν with differential

polynomials as coefficients. Expanding (ν+∂)−1f by
∑

k≥0(−1)kν−1−k∂kf in the former two expressionswe obtain elements
in the subspace whose basis is λiµd−i; doing the same in the latter produces elements in the subspace (λ + µ)−jλd+j. In fact,
they give an infinite number of coefficient, but it is apparent that the vanishing of the terms for k = 0 (corresponding to
λ−1, µ−1 and (λ + µ)−1, respectively) is necessary and sufficient for the vanishing of all the expansion (because the further
elements of the expansion have a different total degree d, so correspond to other elements of the basis).

To explicitly show how we compute the λ bracket for nonlocal PVAs and how we express the terms of the PVA-Jacobi
identity in the basis ofVλ,µ, we demonstrate the full computation for the term T jik

N,L(µ, λ), i.e. the second summand of J ijk(N, L).
We have

{vj
µ{vi

λv
k
}N}L = {vj

µwk
mvm

2x(λ + ∂)−1wi
nv

n
2x}L.

By Leibniz’s property this expression equals

[(λ + ∂)−1wi
nv

n
2x]{v

j
µwk

mvm
2x}L + wk

mvm
2x{v

j
µ(λ + ∂)−1wi

nv
n
2x}L,

(the square brackets remind us that the pseudodifferential operator does not act outside them). Using sesquilinearity on the
second summand we obtain
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[(λ + ∂)−1wi
nv

n
2x]{v

j
µwk

mvm
2x}L + wk

mvm
2x(λ + µ + ∂)−1

{vj
µwi

nv
n
2x}L

= [(λ + ∂)−1wi
nv

n
2x]
(
wk

m,lv
m
2x(µ + ∂)(g ljµ + c ljs v

s
2x) + wk

l (µ + ∂)2(g ljµ + c ljs v
s
2x)
)

+ wk
mvm

2x(λ + µ + ∂)−1 (wi
n,lv

n
2x(µ + ∂)(g ljµ + c ljs v

s
2x) + wi

l(µ + ∂)2(g ljµ + c ljs v
s
2x)
)
.

The first line of the expression is of the form [(λ+∂)−1wi
nv

n
2x]P[µ], so it is enough to expand P . On the other hand, the second

line of the expression is of the form wk
s v

s
2x(λ + µ + ∂)−1P[µ] which cannot be immediately expanded in the basis of Vλ,µ.

Consider for instance

wk
mvm

2x(λ + µ + ∂)−1 (wi
n,lv

n
2x(µ + ∂)(g ljµ + c ljs v

s
2x)
)
.

We proceed by replacing (µ + ∂) with (λ + µ + ∂), then moving it to the right of its inverse to make them cancel out:

wk
mvm

2x(λ + µ + ∂)−1 (wi
n,lv

n
2x(µ + ∂)(g ljµ + c ljs v

s
2x)
)

=

wk
mvm

2x(λ + µ + ∂)−1(λ + µ + ∂)
(
wi

n,lv
n
2x(g

ljµ + c ljs v
s
2x)
)

− wk
mvm

2x(λ + µ + ∂)−1 (λwi
n,lv

n
2x(g

ljµ + c ljs v
s
2x) + ∂(wi

n,lv
n
2x)(g

ljµ + c ljs v
s
2x)
)

= wk
mvm

2xw
i
n,lv

n
2x(g

ljµ + c ljs v
s
2x) + wk

mvm
2x(λ + µ + ∂)−1 (

−λwi
n,lv

n
2xc

lj
s v

s
2x − ∂(wi

n,lv
n
2x)c

lj
s v

s
2x

)
− wk

mvm
2x(λ + µ + ∂)−1 (µλwi

n,lv
n
2xg

lj
+ µ∂(wi

n,lv
n
2x)g

lj) .
The same procedure is then repeated to eliminate µ in the last parenthesis.

We proceed similarly to compute all the terms of the nonlocal part of PVA-Jacobi identity. Finally, we get an overall
expression for which we can collect the coefficients of λ3, µ3, λ2µ, λµ2, λ2, λµ, µ2, λ, µ, 1, [(λ + ∂)−1wi

nv
n
2x]µ

3,
[(λ + ∂)−1wi

nv
n
2x]µ

2, [(λ + ∂)−1wi
nv

n
2x]µ, [(λ + ∂)−1wi

nv
n
2x], [(µ + ∂)−1w

j
nv

n
2x]λ

3, [(µ + ∂)−1w
j
nv

n
2x]λ

2, [(µ + ∂)−1w
j
nv

n
2x]λ,

[(µ + ∂)−1w
j
nv

n
2x], w

k
s v

s
2x(λ + µ + ∂)−1λ3, wk

s v
s
2x(λ + µ + ∂)−1λ2 , wk

s v
s
2x(λ + µ + ∂)−1λ, wk

s v
s
2x(λ + µ + ∂)−1. The last four

terms, of course, mean that the coefficients are differential polynomials on which (λ + µ + ∂)−1 acts.
Under the assumption of skew-symmetry of the brackets provided by relations (11), some of the coefficients in the

previous expansion are equivalent under the interchange of indices. We recall that the PVA-Jacobi identity is fulfilled if
and only if the aforementioned terms vanish for all (i, j, k); in particular, it is sufficient to consider the terms λ−1, µ−1 and
(λ+µ)−1 in the expansion of the nonlocal part, respectively. The independent coefficients that need to be set to 0 are hence
the ones corresponding to λ3, λ2µ, λ2, λµ, λ, µ, 1, λ−1µ3, λ−1µ2, λ−1µ, λ−1. Moreover, each of these coefficients can be
further expanded in the jet variables vi

2x, v
i
3x, v

i
4x that appear in them, leading to a set of equations for g ij, c ijk and wi

j .
In particular, we have the following:

Proposition 1. Assuming the skew-symmetry of the bracket (11), the vanishing of the following coefficients in the expansion of
the PVA-Jacobi identity for the λ bracket (9) is necessary and sufficient for the vanishing of the whole expression.

1. Coefficient of λ3: g ipckjp + gkpc ijp .
2. Coefficient of λ2µ: gkpc ijp + g ipc jkp − g jpckip .
3. Coefficient of λus

3x: after somemanipulations involving the previous identities and their differential consequences we obtain
gkpc ijp,s + ckjp g

pi
,s + ckip c

pj
s − c ikp c

pj
s + gkpwi

pw
j
s.

4. Coefficient of λ−1µ3: −
(
g jpwk

p + gkpw
j
p

)
.

5. Coefficient of λ−1µ2vs
2x: after some manipulations involving the previous identities and their differential consequences we

obtain gkpw
j
p,s + g jp

,s w
k
p − c jkp w

p
s + ckjp w

p
s .

All other coefficients in the expansion are either algebraic/differential consequences of the former ones, or can be obtained from
them by interchange of indices and the skew-symmetry of the bracket.

This finishes the proof of Theorem 1.

6. Concluding remarks

• We have demonstrated that nonlocal operators (2) arise as Dirac reductions of local operators (1) to hyperplanes in the
flat coordinates. It remains to be proved that every nonlocal operator (2) can be obtained by this construction.

• It makes sense to consider Hamiltonian operators with longer ‘nonlocal tails’ such as

A = ∂x

(
g ij∂x + c ijku

k
x +

N∑
α=1

wi
αku

k
x∂

−1
x w

j
αlu

l
x

)
∂x, (12)

which can be viewed as Dirac reductions of local operators (1) to (special!) linear subspaces of codimension N . Thus,
it was observed recently that the oriented associativity equations (which can be reduced to 6-component systems of
hydrodynamic type) possess, in addition to a local first-order Hamiltonian structure [20], a third-order Hamiltonian
operator with nonlocal tail of length N = 3 [21].
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Taking the 5th Eq. (4) for w,

wij,l = csijwsl, (13)

and calculating its compatibility conditions (wij,l)k = (wij,k)l we obtain a linear system for w:

(cpij,k − cqijc
p
qk)wps = (cpij,s − cqijc

p
qs)wpk, (14)

recall that the coefficients cpij are uniquely determined by the Monge metric gij. The analysis of this system for different
Segre types of Monge metrics suggests that for n = 3 the length N of the nonlocal tail cannot exceed 1. This implies
that Theorem 3 of Section 3.2 gives a complete list of 3-component nonlocal operators of type (12). As an immediate
corollary we obtain that already for n = 3 not every Monge metric generates a nonlocal Hamiltonian operator of type
(12) (note that for n = 2 every Monge metric gives rise to a nonlocal operator with tail of length N ≤ 1, see Section
3.1).
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