期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:84
W-algebras and the equivalence of bihamiltonian, Drinfeld-Sokolov and Dirac reductions
Article
Dinar, Yassir Ibrahim1,2 
[1] Sultan Qaboos Univ, Fac Sci, Dept Math & Stat, Muscat, Oman
[2] Abdus Salam Int Ctr Theoret Phys ICTP, Trieste, Italy
关键词: W-algebras;    Bihamiltonian reduction;    Drinfeld-Sokolov reduction;    Dirac reduction;    Slodowy slice;    Transverse Poisson structure;   
DOI  :  10.1016/j.geomphys.2014.06.003
来源: Elsevier
PDF
【 摘 要 】

We prove that the classical W-algebra associated to a nilpotent orbit in a simple Lie-algebra can be constructed by preforming bihamiltonian, Drinfeld-Sokolov or Dirac reductions. We conclude that the classical W-algebra depends only on the nilpotent orbit but not on the choice of a good grading or an isotropic subspace. In addition, using this result we prove again that the transverse Poisson structure to a nilpotent orbit is polynomial and we better clarify the relation between classical and finite W-algebras. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2014_06_003.pdf 439KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次