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a b s t r a c t

Weprove that the classicalW -algebra associated to a nilpotent orbit in a simple Lie-algebra
can be constructed by preforming bihamiltonian, Drinfeld–Sokolov or Dirac reductions.We
conclude that the classical W -algebra depends only on the nilpotent orbit but not on the
choice of a good grading or an isotropic subspace. In addition, using this result we prove
again that the transverse Poisson structure to a nilpotent orbit is polynomial and we better
clarify the relation between classical and finiteW -algebras.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A classical W -algebra is a local Poisson bracket on a loop space L(M) of a manifold M where in some local coordinates
(u1, . . . , un), u1(x) is a Virasoro density and ui(x), i > 1 are primary fields of conformal weights ηi [1], i.e. they satisfy the
identities

{u1(x), u1(y)} = ϵδ′′′(x − y) + 2u1(x)δ′(x − y) + u1
xδ(x − y), (1.1)

{u1(x), ui(y)} = (ηi + 1)ui(x)δ′(x − y) + ηiui
xδ(x − y).

ClassicalW -algebras have a significant role in conformal field theory as their quantization giveW -algebras, i.e. polynomial
extensions of a particular central extension of the Lie algebra of vector fields on the circle [2]. They are also associated to
integrable hierarchies of partial differential equations of KdV type [3]. However,we are interested in classicalW -algebras be-
cause, possibly after a Poisson reduction, we can construct algebraic Frobeniusmanifolds from the dispersionless limit [4–6].

Awide literature is devoted to construct examples of classicalW -algebraswithin the theory of integrable systems (see [2]
for some details). One of the most general and uniform construction was obtained by Feher et al. in [7], where the authors
introduced a generalization of Drinfeld–Sokolov reduction that can be performed for any nilpotent element in simple Lie
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algebras named canonical Drinfeld–Sokolov reduction. This reduction is performed on a standard Lie–Poisson bracket on
loop algebra using Dynkin grading, Slodowy slice and a choice of a maximal isotropic subspace (more details are explained
below). From the construction it is clear that nilpotent elements belonging to the same nilpotent orbit give equal classical
W -algebras. By a nilpotent orbitwemean the conjugacy class of nilpotent elements under the adjoint group action. In [7], the
authors also argued that canonical Drinfeld–Sokolov reduction is equivalent to Dirac reduction of the Lie–Poisson bracket
on Slodowy slice.

Moreover, several attempts have been made to construct classicalW -algebras by performing a bihamiltonian reduction
on Lie–Poisson brackets using the theory of nilpotent orbits. This was obtained by Casati and Pedroni [8] to regular nilpotent
orbits in simple Lie algebras via proving the equivalence between the bihamiltonian and standard Drinfeld–Sokolov
reductions. We refer also to [9,2] for the construction of classical W -algebras associated to regular nilpotent orbits in Lie
algebras of type An.

Furthermore, in [4] we obtained a generalization of the bihamiltonian reduction. This generalization enabled us to
perform bihamiltonian reduction for any nilpotent orbit in simple Lie algebras. It makes use of the Dynkin grading and
the minimal isotropic subspace. In the case of regular nilpotent orbits, our approach made possible to verify directly that
the bihamiltonian reduction leads to classical W -algebras. For arbitrary nilpotent orbit we proved that the bihamiltonian
reduction is equivalent to a generalization of Drinfeld–Sokolov reduction [4, Section 4]. Thus to show that the bihamiltonian
reduction leads to classicalW -algebras it is sufficient to prove the equivalence between different types of Drinfeld–Sokolov
reductions.

Actually in this work we find further results. We prove that the bihamiltonian, Dirac and Drinfeld–Sokolov reductions
are all equivalent. For a given nilpotent element, we prove that the associated classical W -algebra does not depend on the
choice of a good grading or an isotropic subspace. As a consequence we prove again that the transverse Poisson structure to
a nilpotent orbit is polynomial and we better clarify the relation between classical and finiteW -algebras.

2. Poisson geometry and reductions

In this section we fix some notations and terminologies. We review our work in [4] and we add some minor results.
A Poisson manifold M is a manifold endowed with a Poisson bracket {., .}, i.e. a bilinear skewsymmetric form on the

space of smooth functions satisfying the Leibnitz rule and the Jacobi identity. Let M be a Poisson manifold with a Poisson
bracket {., .}. Then the corresponding Poisson tensor P is a linear map P : T ∗M → TM defined by requiring that

{F ,G} = ⟨dF |P dG⟩

for any smooth functions F and G onM . A smooth function F onM is called a Casimir function, if it satisfies

P(dF) = {., F} = 0.

A bihamiltonian manifoldM is a manifold endowed with two Poisson brackets {., .}1 and {., .}2 such that

{., .}λ := {., .}2 + λ{., .}1

is a Poisson bracket for any constant λ. The Jacobi identity for {., .}λ gives the following equation

{{F ,G}1,H}2 + {{G,H}1, F}2 + {{H, F}1,G}2 + {{F ,G}2,H}1 + {{G,H}2, F}1 + {{H, F}2,G}1 = 0 (2.1)

for any smooth functions F ,G and H on M . It follows from this equation that the set of all Casimir functions of {., .}1 are
closed with respect to {., .}2.

LetM be a bihamiltonianmanifoldwith Poisson brackets {., .}1 and {., .}2. Let P1 and P2 denote the corresponding Poisson
tensors, respectively. We assume there is a set

Ξ = {K1, K2, . . . , Kn} (2.2)

of independent Casimirs of {., .}1 which are closed with respect to {., .}2. For the standard bihamiltonian reduction [10] we
assume Ξ to be a complete set of independent Casimirs of {., .}1. Let us fix a level set S of Ξ and let is : S → M be the
canonical immersion. Then we consider the integrable distribution D onM generated by the Hamiltonian vector fields

XKi = P2(dKi), i = 1, . . . , n. (2.3)

Let E denote the distribution induced on S by D. We assume the foliation of E on S is regular, so that N = S/E is a smooth
manifold andπ : S → N is a submersion. Then applyingMarsden–Ratiu reduction theorem [11], we get the following result.

Proposition 2.1 ([4]). The space N has a natural bihamiltonian structure {., .}N2 , {., .}N1 defined as follows. For any functions f , g
on N we have

{f , g}N2 ◦ π = {F ,G}2 ◦ is (2.4)

{f , g}N1 ◦ π = {F ,G}1 ◦ is,

where F and G are functions on M which extend f and g, respectively, and are constant on D.
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2.1. Poisson tensor procedure

In this section we give a procedure to obtain the reduced bihamiltonian structure, it was introduced for the standard
bihamiltonian reduction in [8]. We assume that there is a submanifold Q ⊂ S transverse to E, i.e.

TqS = Eq ⊕ TqQ , for all q ∈ Q . (2.5)

Then we have an isomorphism

Ψ : Q → N

sending a point to the foliation of E containing that point. The composition Ψ −1
◦ π is an inverse of the inclusion map

iQ : Q → S. Hence, the bihamiltonian structure on N can be defined on Q as follows. For any functions f , g on Q we have

{f , g}Q2 = {F ,G}2 (2.6)

{f , g}Q1 = {F ,G}1,

where F ,G are functions onM extending f , g and constant along D. Let PQ
λ denote the Poisson tensor of {., .}Qλ := {f , g}Q2 +

λ{f , g}Q1 .

Lemma 2.2 ([4]). Let q ∈ Q and w ∈ T ∗
q Q . Then there exists v ∈ T ∗

q M such that:
(1) v is an extension of w, i.e. (v, q̇) = (w, q̇) for any q̇ ∈ TqQ .
(2) Pλ(v) ∈ TqQ .

Moreover, the Poisson tensor PQ
λ (w) is given by

PQ
λ w = Pλv (2.7)

for any extension v satisfying conditions (1) and (2).

The previous lemma leads to a procedure to calculate the reduced Poisson bracket. We refer to it simply by Poisson tensor
procedure.

2.2. Bihamiltonian and Dirac reductions

We show that under further hypothesis the bihamiltonian reduction is equivalent to Dirac reduction.

Corollary 2.3. In the notations of Lemma 2.2, an extension v of w is unique if and only if PQ
λ is the Dirac reduction of Pλ to Q .

Proof. We apply Poisson tensor procedure. Let us choose local coordinates (q1, . . . , qn) on M such that Q is defined by the
equations qα

= 0 for α = m + 1, . . . , n. We introduce three types of indices differing by their ranges to simplify the for-
mulas below; capital letters I, J, K , . . . = 1, . . . , n, small letters i, j, k, . . . = 1, . . . .,m which label the coordinates on the
submanifold Q and Greek letters α, β, δ, . . . = m + 1, . . . , n. In these notations a covector w ∈ T ∗Q will have the form

w = ai dqi (2.8)

and an extension of this covector to v ∈ T ∗M satisfying Lemma 2.2 is given by

v = aI dqI , (2.9)

where the coefficients aα ’s are obtained from requiring that

Pλ(v) = Pλ
IJaJ

∂

∂qI
∈ TQ . (2.10)

This means that the coefficients of ∂

∂qβ equal 0 and we get a system of linear equations

− Pλ
αiai = Pλ

αβaβ . (2.11)

Then the uniqueness of the extension v is equivalent to the fact that the minor matrix Pλ
αβ is invertible. Let (Pλ)αβ denote

its inverse, then

aβ = −(Pλ)βαPλ
αiai. (2.12)

Substituting this into the formula of Pλ(v), we get

Pλ(v) =

Pλ

ijaj + Pλ
iβaβ

 ∂

∂qi
=

Pλ

ij
− Pλ

iβ(Pλ)βαPλ
αjaj ∂

∂qi
. (2.13)
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Using the identity PQ
λ (w) = Pλ(v), we end with Dirac formula for the reduced Poisson tensor

(Pλ
Q )ij = Pλ

ij
− Pλ

iβ(Pλ)βαPλ
αj (2.14)

meaning that PQ
λ is the Dirac reduction of Pλ to Q . �

We observe that the bihamiltonian reduction guarantees that PQ
λ is linear in λ and hence we have a bihamiltonian struc-

ture on Q . This fact is not obvious when we use Dirac reduction because Dirac formula used to evaluate the reduced Poisson
tensor depends on the inverse of a matrix.

2.3. Local Poisson brackets and Dirac reduction

LetM be a manifold. The loop space L(M) ofM is the space of smooth maps from the circle toM . A local Poisson bracket
{., .} on L(M) is a Poisson bracket on the space of local functional on L(M). If we choose local coordinates (u1, . . . , un), then
{., .} is a finite summation of the form

{ui(x), uj(y)} =

∞
k=−1

{ui(x), uj(y)}[k], (2.15)

{ui(x), uj(y)}[k] =

k+1
s=0

Ai,j
k,s(u(x))δ

(k−s+1)(x − y),

where Ai,j
k,s(u(x)) are homogeneous polynomials in ∂m

x ur(x) of degree swhen we assign ∂m
x ur(x) degreem and δ(x− y) is the

Dirac delta function defined by
S1

f (y)δ(x − y)dy = f (x).

In particular, the first terms can be written as follows:

{ui(x), uj(y)}[−1]
= F ij(u(x))δ(x − y) (2.16)

{ui(x), uj(y)}[0] = F ij
0 (u(x))δ′(x − y) + Γ

ij
k (u(x))uk

xδ(x − y)

where F ij
0 (u), F ij(u) and Γ

ij
k (u) are smooth functions onM . It follows from the definition that F ij(u) defines a Poisson bracket

onM .
Assume we have a local Poisson bracket on the loop space L(M) of a manifoldM . Let N ⊂ M be a submanifold of dimen-

sionm. Then under some assumptions the Poisson bracket can be reduced toN usingDirac reduction. For this endwe assume
N is defined by the equations uα

= 0 for α = m+1, . . . , n. We introduce three types of indexes; capital letters I, J, K , . . . =

1, . . . , n, small letters i, j, k, . . . = 1, . . . ,m which parameterize the submanifold N and Greek letters α, β, γ , δ, . . . =

m + 1, . . . , n.
We write the Poisson bracket on L(M) in the form

{uI(x), uJ(y)} = FIJ(u(x))δ(x − y)
where FIJ(u) is a matrix differential operator

FIJ(u) =


k≥−1

k+1
s=0

AI,J
k,s(u(x))

dk−s+1

dxk−s+1
. (2.17)

Proposition 2.4. Assume theminormatrixFαβ(u) restricted toL(N) has an inverse Sαβ(u)which is amatrix differential operator
of finite order, i.e. a finite sum

Sαβ(u) =

∞
k=−1

k+1
s=0

Bα,β

k,s (u(x))
dk−s+1

dxk−s+1
. (2.18)

Then Dirac reduction of {., .} to L(N) is well defined and gives a local Poisson structure. The reduced Poisson structure is given by

{ui(x), uj(y)}N =Fij(u)δ(x − y)

whereFij(u) = Fij(u) − Fiα(u)Sαβ(u)Fβj(u). (2.19)

Proof. Let F be a Hamiltonian functional on L(M). Then the Hamiltonian flows have the equations

uI
t = FIJ δF

δuJ
(2.20)
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where δF
δuJ

is the variational derivative of F with respect to uJ(x). Following the spirit of [12] (see also [13, Chapter 3]), the
Dirac procedure for the reduction of (2.20) to L(N) has the form

ui
t = FiJ δF

δuJ
+


{ui(x), uβ(y)}Cβ(y)dy

= Fij δF

δuj
+ Fiβ


δF

δuβ
+ Cβ(x)


, (2.21)

where the Lagrange multiplier Cβ(y) is found from the system of linear equations

0 = uα
t = FαJ δF

δuJ
+


{uα(x), uβ(y)}Cβ(y)dy

= Fαj δF

δuj
+ Fαβ


δF

δuβ
+ Cβ(x)


. (2.22)

Applying the inverse operator Sαβ , we get

δF

δuβ
+ Cβ(x) = −SβαFαj δF

δuj
. (2.23)

Substituting in (2.21),

ui
t = (Fij

− FiβSβαFαj)
δF

δuj
. (2.24)

Hence, the operatorFij
= Fij

− FiβSβαFαj defines the Poisson bracket of the Dirac reduction of {., .} to L(N). �

We show the existence of the inverse operator Sβα under certain condition.

Proposition 2.5 ([4]). In the notations of Eq. (2.16), if the minor matrix Fαβ is nondegenerate on N, then the operator FIJ has an
inverse. Moreover, if Fαβ is the inverse matrix of Fαβ and we write the leading terms of the reduced Poisson bracket on L(N) in
the form

{ui(x), uj(y)}[−1]
N =F ij(u(x))δ(x − y), (2.25)

{ui(x), uj(y)}[0]N =F ij
0 (u(x))δ′(x − y) + Γ ij

k (u(x))uk
xδ(x − y) (2.26)

then F ij
= F ij

− F iβFβαFαj, (2.27)F ij
0 = F ij

0 − F iβ
0 FβαFαj

+ F iβFβαF
αϕ

0 Fϕγ F γ j
− F iβFβαF

αj
0 (2.28)

and Γ ij
k u

k
x =


Γ

ij
k − Γ

iβ
k FβαFαj

+ F iλFλαΓ
αβ

k FβϕFϕj
− F iβFβαΓ

αj
k


uk
x −


F iβ
0 − F iλFλαF

αβ

0


∂x(FβϕFϕj). (2.29)

The other terms of the reduced Poisson structure can be found by solving certain recursive equations.

Corollary 2.6. The Poisson bracket defined on N via the matrixF ij(u) equals the Dirac reduction of the Poisson bracket defined
on M via the matrix F ij(u).

3. Constructing classicalW -algebra

We review some facts about nilpotent elements in simple Lie algebras. A good reference for the material in this section
is the book by Collingwood and McGovern [14].

We fix a simple Lie algebra g over C and a nilpotent element f ∈ g. A good grading for f is a Z-grading

g = ⊕i∈Z gi; [gi, gj] ⊂ gi+j, (3.1)

where
(1) f ∈ g−2, and
(2) The map

ad f : gj → gj−2; a → adf (a) = [f , a]

is injective for j ≥ 1 and surjective for j ≤ 1.

All good gradings for nilpotent elements are classified in [15].
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We fix a good grading Γ for f . Then we choose, by using Jacobson–Morozov theorem, a semisimple element h and a
nilpotent element e ∈ g such that the set A = {e, h, f } forms an sl2-triple, i.e.

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h. (3.2)
We can assume without loss of generality that A is compatible with Γ in the sense that h ∈ g0 and e ∈ g2 [15].

We observe that if Γ ′ denotes the grading on g defined bygi := {x ∈ g : ad h(x) = ix},
then it follows from representation theory of sl2 algebras thatΓ ′ is a good grading for f . Such a good grading obtained from a
sl2-triple is called Dynkin grading. We can map this grading canonically to a weighted Dynkin diagram of g. It is known that
two nilpotent elements are conjugate under the adjoint group action if and only if they have the sameweighted Dynkin dia-
gram. Hence, we conclude that the construction of classicalW -algebras, by the methods we will introduce in next sections,
depends only on the nilpotent orbit of f .

Let ⟨.|.⟩ denote the Killing form on g. Then there is a natural symplectic bilinear form on g−1 defined by

(., .) : g−1 × g−1 → C, (x, y) → ⟨e|[x, y]⟩. (3.3)
We use this symplectic structure to fix an isotropic subspace l ⊂ g−1. Let l′ denote the symplectic complement of l and
introduce the following nilpotent subalgebras

m := l ⊕

i≤−2

gi; n := l′ ⊕

i≤−2

gi. (3.4)

Let gf denote the subspace ker(ad f ) and b denote the orthogonal complement of n under ⟨.|.⟩. Then from the properties of
the good grading we get [16]

dim gf = dim g0 + dim g−1 and gf ⊂ ⊕i≤0 gi ⊂ b. (3.5)

Lemma 3.1. The space b has the following form

b = [m, e] ⊕ gf . (3.6)

Proof. We get from the properties of good grading that

0 = ⟨[m, n]|e⟩ = −⟨n|[m, e]⟩

which implies that [m, e] ⊂ b.We observe that the properties of ad f has its counterpart on ad e. In particular ad e : gi → gi+2
is injective for i < 0. Hence, dim[m, e] = dimm. Also, from representation theory of sl2-triples we get

[m, e] ∩ gf = 0. (3.7)

Computing the dimension of b we find that

dim b = dim⊕i≤0 gi + dim g1 − dim l′ = dim⊕i≤0 gi + dim l

= dimm + dim g0 + dim g−1 = dim[m, e] + dim gf . (3.8)

Hence, from (3.7) and (3.8) we get the direct sum (3.6). �

3.1. Standard Lie–Poisson structures on loop algebra

We define a bihamiltonian structure on the loop algebra L(g) as follows. We extend the Killing form on g to L(g) by
setting

(u|v) =


S1

⟨u(x)|v(x)⟩dx, u, v ∈ L(M). (3.9)

We use (.|.) to identify L(g) with L(g)∗. We define the gradient δF (q) for a functional F on L(g) to be the unique element
in L(g) satisfying

d
dθ

F (q + θ ṡ) |θ=0 =


S1

⟨δF |ṡ⟩dx for all ṡ ∈ L(g). (3.10)

Then we choose an element a ∈ g which centralizes the subalgebra n, i.e.
n ⊂ ker ad a. (3.11)

Such an element always exists. For example, we can take a to be a homogeneous element of the minimal grading. Finally,
we introduce a bihamiltonian structure {., .}2 and {., .}1 on L(g), respectively, by means of Poisson tensors

P2(q(x))(v) = [∂x + q(x), v(x)] (3.12)
P1(q(x))(v) = [a, v(x)],

for every q ∈ L(g) and v ∈ T ∗
q L(g) ∼= L(g). It is a well known fact that they define a bihamiltonian structure on L(g) [17].
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We mention that {., .}2 can be interpreted as the restriction to L(g) of the Lie–Poisson bracket on the untwisted affine
Kac–Moody algebra associated to g. In particular, the leading term {., .}

[−1]
2 defines the Lie–Poisson bracket on g.

3.2. Generalized Drinfeld–Sokolov reduction

We introduce a generalization of Drinfeld–Sokolov reduction by applying Marsden–Weinstein reduction theorem [11].
Let us define a gauge action of the adjoint group N of L(n) by

q(x) → exp(−ads(x))[∂x + q(x)] − ∂x (3.13)

where s(x) ∈ L(n) and q(x) ∈ L(g).

Proposition 3.2 ([4]). The action of N on L(g) under the Poisson tensor

Pλ := P2 + λP1

is Hamiltonian for all λ. It admits a momentum map J to be the projection

J : L(g) → L(n+),

where n+ is the embedding of n∗ in g under the Killing form. Moreover, J is Ad∗-equivariant.

We choose e as a regular value of J . Since b is the orthogonal complement to n, the level set J−1(e) is given by

S := L(b) + e. (3.14)

Proposition 3.3. The isotropy group of e is the adjoint group M of L(m).

Proof. The isotropy group of e is the subgroup of N generated by the set

Ge = {s ∈ L(n) : (exp(ad s)n, e) = (n, e), ∀ n ∈ L(n)}.

Let s ∈ Ge. Then from the grading properties we have

(exp(ad s)n, e) = (n, e), ∀ n ∈ L(n) ⇔ ([s, e], L(n)) = 0.

The last equality is satisfied if and only if the projection sl of s to L(l′) satisfies ([sl, e], L(l′)) = 0. From the definition this
means that sl ∈ L(l) and therefore Ge = L(m). �

Proposition 3.3 implies, usingMarsden–Weinstein reduction theorem [11], that the space S/M is a manifold and inherits
a Poisson tensor P ′

λ from Pλ.

3.3. Generalized bihamiltonian reduction

We perform a bihamiltonian reduction by considering the set Ξ of Casimirs of {., .}1 whose gradient belongs to L(n). For
example, for any element b ∈ n we have that

Fb(q(x)) := (b|q(x))

belongs to Ξ . Since n is a Lie subalgebra, it is easy to verify that Ξ is closed under {., .}2. We take as a level surface the affine
subspace

S := L(b) + e. (3.15)

Then the distribution D equals P2(L(n)). Let E be the restriction of D to S, i.e. E = P2(L(n)) ∩ L(b).

Proposition 3.4. The distribution E is given by

E = P2(L(m)). (3.16)

Moreover, the foliation of E on S is given by the orbits of the adjoint group M of L(m) acting on S by

s(x) + e → exp(−adm(x))[∂x + s(x) + e] − ∂x, (3.17)

where m(x) ∈ L(m) and s(x) ∈ L(b).

Proof. By definition, E consists of all elements v ∈ L(n) such that

⟨vx + [q, v] + [e, v]|w⟩ = 0 (3.18)

for every q ∈ L(b) and w ∈ L(n). We note that this equation is satisfied if v ∈ L(⊕i≤−2 gi). Hence, it is sufficient to assume
that v ∈ L(l′). But then v satisfies the above equation iff

⟨[e, v]|L(l′)⟩ = 0.
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This implies that v belongs to the symplectic complement L(l) of L(l′). Thus

E = P2(l) ⊕ P2


i≤−2

gi


= P2(L(m)). (3.19)

In Proposition 3.6, we prove that the action (3.17) is free, which implies that E is its infinitesimal generator. �

From this proposition it follows that the space N = S/M is well defined as it is the orbit space of the action (3.17).
Hence, we get a bihamiltonian structure PN

1 and PN
2 on N from P1 and P2, respectively. At this point we already proved the

equivalence between Drinfeld–Sokolov and bihamiltonian reductions.

Theorem 3.5. The generalized Drinfeld–Sokolov reduction coincides with the generalized bihamiltonian reduction.

Proof. This follows directly from Propositions 3.3 and 3.4 as in both reductions the reduced space is N = S/M, where
S = L(b) + e and M is the adjoint group of L(m). �

Following the work [18,19], we study the manifold N by introducing a transverse subspace to the orbits in S. Slodowy
slice is a natural choice of such transverse subspace since it is coherent with the theory of nilpotent elements. It is defined
as the affine loop subspace

Q := e + L(gf ) ⊂ S. (3.20)

Proposition 3.6. The manifold Q is transverse to E on S. Hence, for any element s(x) + e ∈ S there is a unique element m(x) ∈

L(m) such that

q(x) + e = exp(−ad m(x))[∂x + s(x) + e] − ∂x (3.21)

belongs to Q . The entries of q(x) give a system of generators for the ring R of differential polynomials on S invariant under the
action (3.17).

Proof. Wemust prove that for any q ∈ L(gf ) and ṡ ∈ L(b) there are a unique v ∈ L(m) and a unique ẇ ∈ L(gf ) such that

ṡ = P2(e + q)(v) + ẇ. (3.22)

We write this equation using the good grading of g. For t ∈ L(g), let ti denote its projection to L(gi). Then we can rewrite
(3.22) as

[e, vi−2] + ẇi = ṡi − v′

i −


k

[qk, vi−k]. (3.23)

This gives a linear system of equations which can be solved recursively because the map ad e is injective for i < 0 and we
have

L(gf ) ⊕ [e, L(m)] = L(b) (3.24)

from Lemma 3.1. The second part of the proposition can be proved similarly. �

Nowwe explain what we call Drinfeld–Sokolov method for calculating the reduced bihamiltonian structure. We write the
coordinates of Q as differential polynomials in the coordinates of S by means of Eq. (3.21) and then apply the Leibnitz rule.
If si(x) denote the coordinates on S, then the Leibnitz rule for u, v ∈ R have the following form

{u(x), v(y)}λ =
∂u(x)

∂(∂msi)
∂m
x

 ∂v(y)
∂(∂nsj)

∂n
y


{si(x), sj(y)}λ


. (3.25)

3.3.1. Fractional KdV
We demonstrate Drinfeld–Sokolovmethodwhen g is the Lie algebra sl3 and f is a minimal nilpotent element.We explain

the different choices of good gradings, isotropic subspaces and first Poisson brackets. To this end, let us denote ei,j the
fundamental 3× 3 matrix, i.e. (ei,j)s,t := δi,sδj,t . We consider the sl2-triple A = {e, h, f }, where e = e1,3, h = e1,1 − e3,3 and
f = e3,1. There are three good gradings compatible with A. The following matrices summarize the degrees assigned to ei,j
by these gradings. The grading Γ1 is Dynkin grading.

Γ1 :=

 0 1 2
−1 0 1
−2 −1 0


, Γ2 :=

 0 0 2
0 0 2

−2 −2 0


, Γ3 :=

 0 2 2
−2 0 0
−2 0 0


. (3.26)

Let us list some possible choices for the element awhich can be used to define the first Poisson tensor P1 on L(g) (3.12).
First, we can take a = e3,1 since it has the minimal degree in all good gradings. We can also choose a = e3,2 (resp. a = e2,1)
since it has theminimal degree in the grading Γ2 (resp. Γ3). Moreover, we can set a = e2,1 + e3,2 (resp. a = e2,1 − e3,2) when
we consider the grading Γ1 and fix the isotropic subspace l = C(e2,1 + e3,2) (resp. l = C(e2,1 − e3,2)).
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Under any choice of a good grading or isotropic subspace, the transverse subspace Q is the same. We fix for Q the fol-
lowing coordinates. Here we use lower indices for convenience.

q(x) =

q4(x) 0 1
q3(x) −2q4(x) 0
q1(x) q2(x) q4(x)


. (3.27)

Let us consider the grading Γ1. We fix the isotropic subspace C(e2,1 + e3,2) and define P1 by taking a = e2,1 + e3,2. Then
the subspace S takes the form

s(x) =

s4(x) + s5(x) s6(x) 1
s3(x) −2s4(x) −s6(x)
s1(x) s2(x) s4(x) − s5(x)


. (3.28)

Eq. (3.21) leads to the following system of generators for the invariant ring R

q1(x) = s1(x) −
3
4
s46(x) + 3s4(x)s26(x) − s2(x)s6(x) + s3(x)s6(x) + s25(x) − s′5(x);

q2(x) = s2(x) + s6(x)3 − 3s4(x)s6(x) + s5(x)s6(x) − s′6(x);

q3(x) = s3(x) − s36(x) + 3s4(x)s6(x) + s5(x)s6(x) − s′6(x);

q4(x) = s4(x) −
1
2
s26(x).

Calculating the reduced Poisson brackets by using the Leibnitz rule (3.25), the nonzero brackets of {., .}Q1 are

{q1(x), q2(y)}
Q
1 =

3
2

δ′(x − y) − 3 q4(x)δ(x − y); (3.29)

{q1(x), q3(y)}
Q
1 =

3
2

δ′(x − y) + 3q4(x) δ(x − y);

{q2(x), q4(y)}
Q
1 = −

1
2

δ(x − y);

{q3(x), q4(y)}
Q
1 =

1
2

δ(x − y),

while the nonzero ones of {., .}Q2 are

{q1(x), q1(y)}
Q
2 = −

1
2
δ′′′(x − y) + 2 q1(x) δ′(x − y) + ∂xq1δ(x − y); (3.30)

{q1(x), q2(y)}
Q
2 =

3
2
q2(x) δ′(x − y) +

1
2


−6 q2(x) q4(x) + q′

2(x)

δ(x − y);

{q1(x), q3(y)}
Q
2 =

3
2
q3(x) δ′(x − y) +

1
2


6 q3(x) q4(x) + q′

3(x)

δ(x − y);

{q2(x), q3(y)}
Q
2 = −δ′′(x − y) +


q1(x) − 9q4(x)2 − 3q′

4(x)

δ(x − y) − 6 q4(x)δ′(x − y);

{q2(x), q4(y)}
Q
2 = −

1
2
q2(x)δ(x − y);

{q3(x), q4(y)}
Q
2 =

1
2
q3(x)δ(x − y);

{q4(x), q4(y)}
Q
2 =

1
6
δ′(x − y).

If we consider the grading Γ3 and we define P1 by taking a = e2,1, then the space S will take the form

s(x) =

s4(x) + s5(x) 0 1
s3(x) −2s4(x) s6(x)
s1(x) s2(x) s4(x) − s5(x)


(3.31)

and the system of generators will change to

q1(x) = s1(x) + s5(x)2 + s2(x)s6(x) − s′5(x);
q2(x) = s2(x);
q3(x) = s3(x) − 3s4(x)s6(x) − s5(x)s6(x) + s′6(x);
q4(x) = s4(x).
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Calculating {., .}
Q
2 using this system of generators, we get again the brackets (3.30). This suggests that the reduced second

Poisson bracket is independent of the choice of good grading and isotropic subspace.We prove this result in the next section.
We mention here that the Poisson bracket (3.30) is known in the literature as fractional KdV algebra and the Poisson

bracket (3.29) is used in [3,20] to construct an integrable hierarchy.

3.4. Poisson tensor procedure and Dirac reduction

Let us apply Poisson tensor procedure to construct PQ
λ .

Proposition 3.7. Let z ∈ Q andw ∈ T ∗
z Q . Then an extension v ∈ T ∗

z L(g) of w satisfying the hypothesis of Lemma 2.2 is unique.
The reduced Poisson tensor in this case is given by

PQ
λ (w) = Pλ(v). (3.32)

Proof. We identify T ∗
z Q ≃ L(gf )

∗ with L(ge) using the Killing form. Let w ∈ T ∗
z Q . Then a vector v ∈ L(g) extends w if

(w, s) = (v, s) for all s ∈ L(gf ). Using the direct sum g = [g, f ] ⊕ ge, we find that a vector v ∈ L(g) extends w if and only if
the projection ve of v toL(ge) equalsw. Let us rewrite the condition Pλ(v) ∈ TzQ of Lemma 2.2 under the gradingΓ . Here for
s ∈ L(g), we denote si its projection to L(gi). For i ≥ 0, we get a recursive linear system of equations on the coordinates of vi

[vi, e] = v′

i+2 + λ[a, v]i+2 +


k≤0

[qk, vi+2−k] (3.33)

which can be solved uniquely since ad e restricted to gi is surjective and the projection of vi to kernel ad e equals (ve)i. For
i ≤ −1, we have gi+2 = (gf )i+2 ⊕[gi, e] and we get a recursive linear system of equations on the coordinates of vi by setting
the projection of

[e, vi] + v′

i+2 + λ[a, v]i+2 +


k≤0

[qk, vi+2−k] (3.34)

to [gi, e] equals 0, which can be solved uniquely as the map ad e restricted to gi is injective. �

Now we are in a position to prove the following theorem.

Theorem 3.8. The reduced second Poisson bracket {., .}
Q
2 on Q is independent of the choice of a good grading and an isotropic

subspace.

Proof. We observe that the calculation of PQ
λ in Proposition 3.7 can be done by using any other choice of good grading. This

implies that this calculation depends only on the properties of sl2-triples {e, h, f }. The Poisson bracket {., .}
Q
2 is obtained by

setting λ = 0 in the recursive equations (3.33) and (3.34). This ends the proof. �

We obtain the following theorem by applying Corollary 2.3.

Theorem 3.9. The Poisson bracket {., .}
Q
λ equals the Dirac reduction of {., .}λ to Q . It can be calculated by using Dirac formulas

given in Proposition 2.5.

In [7], the authors proved the following.

Theorem 3.10. WhenΓ is the Dynkin grading and l is a Lagrangian subspace, the Poisson bracket {., .}
Q
2 is a classicalW-algebra.

Combining this result with Theorem 3.8 we get the following.

Theorem 3.11. The classical W-algebra associated to a nilpotent orbit is independent of the choice of a good grading and an
isotropic subspace and it can be calculated equally by using Drinfeld–Sokolov method, Poisson tensor procedure or Dirac formula.

Let us explain in some detail, how we apply Dirac reduction to find {., .}
Q
λ . We fix a homogeneous basis ξ1, . . . , ξn for g

with ξ1, . . . , ξm a basis for gf . Let ξ 1, . . . , ξ n
∈ g be the dual basis satisfying

⟨ξi|ξ
j
⟩ = δ

j
i .

Note that if ξi ∈ gj then ξ i
∈ g−j and ξ 1, . . . , ξm are a basis for ge. We calculate in this basis the structure constants and the

matrix of the Killing form

[ξ i, ξ j
] := c ijk ξ

k, ⟨[ξ i, ξ j
]|a⟩ = c ija , g ij

= ⟨ξ i
|ξ j

⟩. (3.35)

Let us consider the following coordinates on L(g)

qi(z) := ⟨z − e|ξ i
⟩, i = 1, . . . , n. (3.36)
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Then matrix differential operator

Fij
λ = −g ij∂x −


k

c ijk q
k(x) − λc ija (3.37)

defines the Poisson brackets

{qi(x), qj(y)}λ = Fij
λδ(x − y). (3.38)

From the construction, Slodowy sliceQ is defined by qα
= 0 forα = m+1, . . . , n. Thenwe can directly apply Dirac formulas

given in Proposition 2.5 to find the reduction of {., .}λ to Q .

Example 3.12 (The KdV Bihamiltonian Structure). Let g be the Lie algebra sl2 with its standard basis

e =


0 1
0 0


, h =


1 0
0 −1


, f =


0 0
1 0


. (3.39)

For a point q ∈ L(g) we use the notations

q(x) = qe(x)e +
1
2
qh(x)h + qf (x)f (3.40)

and we define P1 by setting a = f . Then the matrix differential operator on Q := e + qf (x)f is given by

Fα,β

λ =

 0 0 ∂x
0 2∂x 0
∂x 0 0


+

 0 2(qf (x) + λ) 0
−2(qf (x) + λ) 0 2

0 −2 0


. (3.41)

Here, we order the coordinates as

qf (x), qh(x), qe(x)


. The minor matrix operator Fαβ

λ , α, β := 2, 3 has the following
inverse

S =


0 0

0
1
2
∂x


+

0 −
1
2

1
2

0

 . (3.42)

Then apply Dirac formula to get

PQ
λ = −

1
2
∂3
x + 2(qf + λ)∂x + qf (3.43)

which gives the bihamiltonian structure associated to the KdV equation

{qf (x), qf (y)}
Q
2 = −

1
2
δ′′′(x − y) + 2( qf (x) + λ) δ′(x − y) + ∂xqf δ(x − y). (3.44)

4. Conclusions and remarks

4.1. Transverse Poisson structure

Let us consider the leading terms {., .}
[−1]
2 and {., .}

[−1]
1 of the bihamiltonian structure {., .}2 and {., .}1 on L(g). In the

notations introduced after Theorem 3.11, we have

{qi, qj}[−1]
2 = −


k

c ijk q
k, (4.1)

{qi, qj}[−1]
1 = −c ija .

In the same manner as in Proposition 3.2, we can prove that the restriction of the action (3.13) to the adjoint group of n on
g is Hamiltonian and admits a momentum map. Taking e as a regular value, we obtain a bihamiltonian structure {., .}

Q [−1]
1 ,

{., .}
Q [−1]
2 on Slodowy sliceQ = e + gf . From Corollary 2.6, this bihamiltonian structure is the leading term of the bihamil-

tonian structure {., .}
Q
λ on Q .

The Poisson structure {., .}
Q [−1]
2 is known in the literature as the transverse Poisson structure (TPS) to the adjoint orbit

of e. It was originally defined as the Dirac reduction of {., .}[−1]
2 toQ (see [21] and the references within). There were many

papers devoted to prove that the TPS is a polynomial structure. Thiswas not a trivial problem as themethod used to calculate
the TPS was Dirac formulas and it depends on the inverse of a polynomial matrix. In this paper we proved that, in addition
to Dirac formulas, the TPS can be calculated by using Poisson tensor procedure and Drinfeld–Sokolov method. Both lead to a
simpler proof for the polynomiality of the TPS as the former uses the linear recursive equations obtained in Proposition 3.7
and the latter uses the Leibnitz rule (3.25) on differential polynomials.



Y.I. Dinar / Journal of Geometry and Physics 84 (2014) 30–42 41

4.2. Classical and finite W-algebras

Wemention that Slodowy sliceQ is associated to the theory of finiteW -algebras initiated by Premet [22]. More precisely,
let χ ∈ g∗ be given by

χ(x) = ⟨e|x⟩

and consider the one dimensional character Cχ on m given by the restriction of χ . Let U(g) and U(m) be the universal
enveloping algebras of g and m, respectively, and define the associative algebra

Qχ := U(g) ⊗U(m) Cχ .

Then the finiteW -algebra is a noncommutative algebra defined as

Wχ := EndU(g)(Qχ )op. (4.2)

In [23], Gan and Ginzburg proved thatWχ is a quantization of TPS and it is independent of the choice of isotropic subspace,
while Brundan and Goodwin [24] proved thatWχ is independent of the choice of a good grading (see [16] and the references
within for more details). In this work we proved a similar argument for classical W -algebras. We hope this will contribute
in clarifying more the relation between classical and finiteW -algebras.

4.3. Integrable hierarchies of KdV type

Let {., .}Q2 be a classicalW -algebra associated to a nilpotent element e. In this paper we gave a procedure to obtain a Pois-
son bracket {., .}

Q
1 such that it forms with {., .}

Q
2 a bihamiltonian structure. This Poisson bracket is a reduction of a Poisson

bracket defined on L(g) by means of an element a satisfying the following sufficient condition (see Eq. (3.12)): There exists
a good grading Γ for e and an isotropic subspace l ⊂ g−1 such that

n := l′ ⊕

i≤−2

gi ⊂ ker ad a (4.3)

where l′ is the symplectic complement of l. Examples above suggest that this may be a necessary condition as well. Classify-
ing such elements amay help in studying integrable hierarchies associated to classicalW -algebras. In particular, if a is such
that a+e is regular semisimple then one can obtain an integrable hierarchy by using Zakharov–Shabat scheme, i.e. analyzing
the spectrum of the matrix differential operator

Pλ = ∂x + q(x) + e + λa, q(x) ∈ L(b).

This includes the generalized Drinfeld–Sokolov hierarchy developed in [18,25,3,26]. Wemention here that in the case of the
subregular nilpotent element in the Lie algebra of type C3 there exist an element a ∈ g such that e+ a is regular semisimple.
Unfortunately, the sufficient condition (4.3) is not satisfied. In other words, the bihamiltonian structure defined by using
this element a cannot be reduced to bihamiltonian structure on Slodowy slice by the methods introduced in this paper.

4.4. General remark

It iswell known that, under certain assumptions, froma local bihamiltonian structure onL(M), whereM is a smoothman-
ifold, one can construct a Frobenius structure onM . Our main motivation in studying local bihamiltonian structures related
to classical W -algebras is the classification and construction of algebraic Frobenius manifolds [4–6]. The classification of
Frobenius manifolds is the first step to classify local bihamiltonian structures using the concept of central invariants [27]. In
the case of a regular nilpotent element in a simply laced Lie algebra the bihamiltonian structure obtained fromapplying stan-
dard Drinfeld–Sokolov reduction [18] gives a polynomial Frobenius manifolds and the central invariants are all equal to 1

24 .
In a subsequent publication we will consider further examples of Frobenius manifolds and investigate the central

invariants on bihamiltonian manifolds that are produced by applying the reduction methods introduced in this paper.
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