JOURNAL OF GEOMETRY AND PHYSICS | 卷:162 |
Invariant metric on the extended Siegel-Jacobi upper half space | |
Article | |
Berceanu, Stefan1  | |
[1] Horia Hulubei Natl Inst Phys & Nucl Engn, Dept Theoret Phys, POB MG-6, Magurele 077125, Romania | |
关键词: Jacobi group; Jacobi algebra; Siegel-Jacobi upper half space; Extended Siegel-Jacobi upper half space; Invariant metrics; Coherent states; | |
DOI : 10.1016/j.geomphys.2020.104049 | |
来源: Elsevier | |
【 摘 要 】
The real Jacobi group G(n)(J)(R), defined as the semidirect product of the Heisenberg group H-n(R) with the symplectic group Sp(n, R), admits a matrix embedding in Sp(n + 1, R). The modified pre-Iwasawa decomposition of Sp(n, R) allows us to introduce a convenient coordinatization S-n of G(n)(J)(R), which for G(1)(J)(R) coincides with the S-coordinates. Invariant one-forms on G(n)(J)(R) are determined. The formula of the 4-parameter invariant metric on G(n)(J)(R) obtained as sum of squares of 6 invariant one-forms is extended to G(n)(J)(R), n is an element of N. We obtain a three parameter invariant metric on the extended Siegel-Jacobi upper half space (X) over tilde (J)(n) approximate to (X) over tilde (J)(n) x R by adding the square of an invariant one-form to the two-parameter roR) balanced metric on the Siegel-Jacobi upper half space XnJ = GnJ(R)/U(n)xR. (C) 2020 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_geomphys_2020_104049.pdf | 677KB | download |