Symmetry Integrability and Geometry-Methods and Applications | |
The Real Jacobi Group Revisited | |
article | |
Stefan Berceanu1  | |
[1] National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics | |
关键词: Jacobi group; invariant metric; Siegel–Jacobi upper half-plane; balanced metric; extended Siegel–Jacobi upper half-plane; naturally reductive manifold; | |
DOI : 10.3842/SIGMA.2019.096 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
The real Jacobi group $G^J_1(\mathbb{R})$, defined as the semi-direct product of the group ${\rm SL}(2,\mathbb{R})$ with the Heisenberg group $H_1$, is embedded in a $4\times 4$ matrix realisation of the group ${\rm Sp}(2,\mathbb{R})$. The left-invariant one-forms on $G^J_1(\mathbb{R})$ and their dual orthogonal left-invariant vector fields are calculated in the S-coordinates $(x,y,\theta,p,q,\kappa)$, and a left-invariant metric depending of 4 parameters $(\alpha,\beta,\gamma,\delta)$ is obtained. An invariant metric depending of $(\alpha,\beta)$ in the variables $(x,y,\theta)$ on the Sasaki manifold ${\rm SL}(2,\mathbb{R})$ is presented. The well known Kähler balanced metric in the variables $(x,y,p,q)$ of the four-dimensional Siegel-Jacobi upper half-plane $\mathcal{X}^J_1=\frac{G^J_1(\mathbb{R})}{{\rm SO}(2) \times\mathbb{R}} \approx\mathcal{X}_1 \times\mathbb{R}^2$ depending of $(\alpha,\gamma)$ is written down as sum of the squares of four invariant one-forms, where $\mathcal{X}_1$ denotes the Siegel upper half-plane. The left-invariant metric in the variables $(x,y,p,q,\kappa)$ depending on $(\alpha,\gamma,\delta)$ of a five-dimensional manifold $\tilde{\mathcal{X}}^J_1= \frac{G^J_1(\mathbb{R})}{{\rm SO}(2)}\approx\mathcal{X}_1\times\mathbb{R}^3$ is determined.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000731ZK.pdf | 857KB | download |