期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:146
Noncommutative Kahler structure on C*-dynamical systems
Article
Guin, Satyajit1 
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词: Noncommutative geometry;    Complex structure;    Kahler structure;    Spectral triple;    C*-dynamical system;    Noncommutative tori;   
DOI  :  10.1016/j.geomphys.2019.103492
来源: Elsevier
PDF
【 摘 要 】

Notions of noncommutative complex and Kahler structure have been introduced by Frohlich et al. (1999), in the context of supersymmetric quantum theory. Here we show that whenever a C*-dynamical system (A, G, alpha, tau) equipped with a faithful G-invariant trace tau, where G is an even dimensional abelian Lie group, determines a spectral triple, the smooth dense subalgebra A(infinity) inherits a noncommutative Kahler structure. In particular, whenever T-2n acts ergodically on the algebra, it inherits a noncommutative Kahler structure. This produces a class of examples of noncommutative Kahler manifolds. As a corollary, we obtain that all the noncommutative even dimensional tori are noncommutative Kahler manifolds. We explicitly compute the space of complex differential forms and study holomorphic vector bundles on all noncommutative even dimensional tori. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2019_103492.pdf 549KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次