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a b s t r a c t

Notions of noncommutative complex and Kähler structure have been introduced by
Fröhlich et al. (1999), in the context of supersymmetric quantum theory. Here we show
that whenever a C∗-dynamical system (A,G, α, τ ) equipped with a faithful G-invariant
trace τ , where G is an even dimensional abelian Lie group, determines a spectral
triple, the smooth dense subalgebra A∞ inherits a noncommutative Kähler structure. In
particular, whenever T2n acts ergodically on the algebra, it inherits a noncommutative
Kähler structure. This produces a class of examples of noncommutative Kähler manifolds.
As a corollary, we obtain that all the noncommutative even dimensional tori are non-
commutative Kähler manifolds. We explicitly compute the space of complex differential
forms and study holomorphic vector bundles on all noncommutative even dimensional
tori.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Classical differential geometry was extended to the noncommutative world of C∗-algebras in the early 80s by Connes
in [7], and subsequently in [8]. Many highly singular (and classically intractable) objects such as the dual of a discrete
group, Penrose tilings or quantum groups may be analyzed by applying cyclic cohomology, K-theory and other tools of
noncommutative geometry. Apart from its own mathematical beauty, several fruitful applications of noncommutative
geometry in physics (see for e.g. [10,15,37]) have been observed. Despite much progress in noncommutative geometry in
past 30 years, noncommutative complex geometry is not developed that much yet. Connes–Cuntz first outlined a possible
approach to the idea of a complex structure in noncommutative geometry based on the notion of positive Hochschild
cocycle on an involutive algebra [14]. In ([8], Section VI.2) Connes shows that positive Hochschild cocycles on the algebra of
smooth functions on a compact oriented 2-dimensional manifold encode the information needed to define a holomorphic
structure on the surface. However, the corresponding problem of characterizing holomorphic structures on n-dimensional
manifolds via positive Hochschild cocycles is still open.

Coming to concrete examples, a detail study of complex structure on noncommutative two-torus and holomorphic
vector bundles on them is carried out in [32], taking motivation from [18,36]. Complex structure on the Podleś sphere
is studied in [31] using a frame bundle approach, and simultaneously but independently in [24,25] using a classification
of the covariant first order differential calculi of the irreducible quantum flag manifolds. Latter in [29], properties of the
q-Dolbeault complex of [31] are formalized and it was shown to resemble in many aspects the analogous structure on the
classical Riemann sphere. See [30] for the case of higher dimensional quantum projective spaces. A more comprehensive
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version of noncommutative complex structure appeared latter in [2] and complex structure on quantum homogeneous
spaces is studied in [3]. The main tool used in all these examples is the Woronowicz’s differential calculus for quantum
groups [39]. In this algebraic setting, recently the notion of Kähler structure has been introduced in [4] for quantum
homogeneous spaces, taking the quantum flag manifolds as motivating family of examples. However, our approach
(based on [20]) in this article is different from this, taking the noncommutative torus as motivating example. We discuss
it now.

In noncommutative geometry, a (noncommutative) manifold is described by a triple called spectral triple. That the
notion of spectral triple is the correct noncommutative generalization of classical manifolds is shown by Connes [13].
However, it turns out that the notion of spectral triple is not quite appropriate to describe the higher geometric structures,
e.g. complex, Hermitian, Kähler or hyper-Kähler structures, even in the classical setting. Around ’98, a decent approach
to noncommutative complex, Hermitian, Kähler and hyper-Kähler geometry has been initiated by Fröhlich et al. [19,20]
in the context of supersymmetric quantum theory. Unlike the case of above discussed examples, where the approach
is algebraic, methods of Fröhlich et al. are geometric and analytic in the sense that spectral triple lies at the heart of it
and integration theory is built-in using β-KMS state. Taking inspiration from Witten’s supersymmetric approach to the
Morse inequalities [38] and the work of Jaffe et al. on connections between cyclic cohomology and supersymmetry [28],
Fröhlich et al. obtained the supersymmetric algebraic formulation of Riemannian, spin, symplectic, complex, Hermitian,
Kähler and hyper-Kähler geometry in [19], which then readily generalizes to the noncommutative geometry framework
of spectral triples in [20]. See also §3.B in [27] for discussion. It is important to mention here that there are well known
links between supersymmetric σ -models and the geometry of manifolds [1]. The approach of Fröhlich et al. starts with a
spectral triple and detects the precise analytic conditions required to obtain the complex, Hermitian, Kähler and hyper-
Kähler structures on it. They have denoted these various higher geometric structures by N = 1, N = 2 and N = (n, n)
with n = 1, 2, 4, along the line of supersymmetry. We denote the relationship among these geometric structures vaguely
by N = (4, 4) ≼ N = (2, 2) ≼ N = (1, 1) ≼ N = 1 to mean that the former is obtained from the latter by imposing certain
additional conditions. Among these, our concern in this article are the N = 1, N = (1, 1) and N = (2, 2) geometries.
We believe that our results will extend to the N = (4, 4) case also but this needs further investigation. Note that the
N = 1 data is specified by a Θ-summable even spectral triple in noncommutative geometry, and the N = (2, 2) data
extends the notion of Hermitian and Kähler manifolds to noncommutative geometry. For precise definitions see Section 2
Definitions 2.2–2.6. We will call these various higher geometric structures as the N = • or N = (• , •) spectral data in this
article. In the classical case of a spin manifold M, from the N = (1, 1) spectral data one may recover the graded algebra
of differential forms on M and in particular, the exterior differential.

We now briefly describe our results. Let G be an even dimensional abelian Lie group acting strongly (by action
α : G ↷ A) on a unital C∗-algebra A and τ be a G-invariant faithful trace on A, so that the quadruple (A,G, α, τ )
forms a C∗-dynamical system equipped with a faithful G-invariant trace. This is in line with [7,16,35]. Let A∞ be the
smooth dense unital subalgebra of A under the action of G. We prove that whenever this dynamical system determines
a N = 1 spectral data (i.e. an even spectral triple) on A∞ (there is always a candidate which we explicitly mention),
then it always extends to N = (2, 2) Kähler spectral data i.e. A∞ inherits a Kähler structure. Moreover, there are at
least

∏ dim(G)
j=1, j odd(dim(G) − j) different Kähler structures. In particular, whenever G = T2n acts ergodically on the algebra,

it inherits a Kähler structure. This produces a class of examples of noncommutative Kähler manifolds. As a corollary, we
obtain that all the noncommutative even dimensional tori, like their classical counterpart the complex tori, are indeed
noncommutative Kähler manifolds. Note that in the noncommutative situation, noncommutative two-torus was the only
known example of noncommutative Kähler manifold [20] (apart from the ones recently produced in [4] by taking a
different approach). As an application, we consider the particular case of noncommutative even dimensional tori and
explicitly compute the associated space of complex differential forms. At the end we study holomorphic vector bundles
on these and explain how the earlier set-up of Polishchuk–Schwarz [32] for the case of noncommutative two-torus follows
as a special case of our general framework for C∗-dynamical systems. For a 4n-dimensional abelian Lie group whether
the Kähler structure obtained here extends further to a hyper-Kähler structure is left as an open question.

The organization of the paper is as follows. In Section 2 we recall from [20] few essential definitions and a procedure
to extend a N = 1 spectral data to N = (1, 1) spectral data over the same noncommutative base space using a suitable
connection on a finitely generated projective module equipped with Hermitian structure. Using this extension procedure
we prove the following theorem in Section 3.

Theorem 1.1. Let G be an even dimensional abelian Lie group and (A,G, α, τ ) be a C∗-dynamical system equipped with a
faithful G-invariant trace τ . Whenever it determines a Θ-summable even spectral triple, the smooth dense subalgebra A∞

inherits a Kähler structure.

As corollaries we obtain the following results.

Corollary 1.2. If (A,T2k, α) is a C∗-dynamical system such that the action of T2k is ergodic, then the smooth dense subalgebra
A∞ inherits a Kähler structure.

Corollary 1.3. For n even, the noncommutative n-torus AΘ satisfies the N = (2, 2) Kähler spectral data, i.e. these are
noncommutative Kähler manifolds.
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In Section 4, we explicitly compute the space of complex differential forms on all noncommutative even dimensional
tori and finally, in Section 5 we study holomorphic vector bundles.

2. Preliminaries

All algebras considered in this article will be assumed unital.

Definition 2.1. A triple (A,H,D) is called a spectral triple if

(1) A is a unital associative ∗-algebra represented faithfully on the separable Hilbert space H by bounded operators;
(2) D is an unbounded self-adjoint operator acting on H such that for each a ∈ A

(a) the commutator [D, a] extends uniquely to a bounded operator on H,
(b) D has compact resolvent.

If there is a Z2-grading operator on H such that [γ , a] = 0 for all a ∈ A and {γ ,D} = 0 then the spectral triple is
called even, and otherwise odd. Note that D has compact resolvent is equivalent to saying that exp(−εD2) is a compact
operator for all ε > 0. If |D|

−p is in the Dixmier ideal L(1,∞)(H) then the spectral triple is called p-summable.

Definition 2.2. A quadruple (A,H,D, γ ) is called a set of N = 1 spectral data if

(1) A is a unital associative ∗-algebra represented faithfully on the separable Hilbert space H by bounded operators;
(2) D is an unbounded self-adjoint operator acting on H such that for each a ∈ A

(a) the commutator [D, a] extends uniquely to a bounded operator on H,
(b) the operator exp(−εD2) is trace class for all ε > 0;

(3) γ is a Z2-grading on H such that [γ , a] = 0 for all a ∈ A and {γ ,D} = 0.

Remark 2.3. Observe that the N = 1 spectral data represents a Θ-summable even spectral triple in noncommutative
geometry [9]. In particular, any p-summable even spectral triple is a N = 1 spectral data since finite summability implies
Θ-summability. The associated space of differential forms, called the Dirac dga, extends the classical de-Rham dga on
manifolds to noncommutative framework [10].

Definition 2.4. A quintuple (A,H, d, γ , ⋆) is called a set of N = (1, 1) spectral data if

(1) A is a unital associative ∗-algebra represented faithfully on the separable Hilbert space H by bounded operators;
(2) d is a densely defined closed operator on H such that

(a) d2 = 0,
(b) the commutator [d, a] extends uniquely to a bounded operator on H for each a ∈ A,
(c) the operator exp(−ε△), with △ = dd∗

+ d∗d, is trace class for all ε > 0;

(3) γ is a Z2-grading on H such that [γ , a] = 0 for all a ∈ A and {γ , d} = 0;
(4) ⋆ is a unitary operator acting on H such that

(a) ⋆d = ζd∗⋆ for some phase ζ ∈ S1
⊆ C,

(b) [⋆, a] = 0 for all a ∈ A.

Remark 2.5.

(1) In analogy with the classical case, the operator ⋆ is called the Hodge operator.
(2) As is always achievable in the classical case of manifolds, the Hodge operator can be taken to satisfy ⋆2 = 1 and

[⋆, γ ] = 0, and the phase ζ = −1 (see discussion in Page 139 in [20]).
(3) The associated space of N = (1, 1) differential forms is given in (Section 2.2.2 in [20]) and the notion of integration

is described in (Section 2.2.3 in [20]).

Definition 2.6. An octuple (A,H, ∂, ∂, T , T , γ , ⋆) is called a set of N = (2, 2) Kähler spectral data if

(1) the quintuple (A,H, ∂ + ∂, γ , ⋆) forms a set of N = (1, 1) spectral data;
(2) T , T are bounded self-adjoint operators on H, and ∂, ∂ are densely defined closed operators on H such that the

following relations hold :

(a) ∂2 = ∂
2

= 0 , (b) {∂, ∂} = 0 , (c) [T , T ] = 0 ,

(d) [T , ∂] = ∂ , (e) [T , ∂ ] = 0 , (f ) [ T , ∂] = 0 , (g) [ T , ∂ ] = ∂ ;
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(3) [T , a] = [ T , a] = 0 ∀ a ∈ A, and [∂, a], [ ∂, a], {∂, [ ∂, a]} extends uniquely to bounded operators on H;

(4) the Z2-grading operator γ satisfies

(a) {γ , ∂} = {γ , ∂} = 0,
(b) [γ , T ] = [γ , T ] = 0;

(5) for some phase ζ ∈ S1, the Hodge operator ⋆ ∈ U(H) satisfies

(a) ⋆ ∂ = ζ∂
∗

⋆ ,
(b) ⋆ ∂ = ζ∂∗⋆ ;

(6) the following Kähler conditions are satisfied

(a) {∂, ∂
∗

} = { ∂, ∂∗
} = 0,

(b) {∂, ∂∗
} = { ∂, ∂

∗

}.

Remark 2.7.

(1) Condition 6(a) is consequence of 6(b) in classical complex geometry but has to be imposed as a separate condition
in noncommutative framework [20]. This says that the Laplacian △ = 2△∂ like in the case of classical Kähler
manifolds.

(2) In the classical case, T and T represent the holomorphic and the anti-holomorphic Z-grading of complex differential
forms (Page 538 in [19]). The presence of T and T in the N = (2, 2) spectral data implies few crucial properties not
enjoyed by the N = (1, 1) spectral data (Propn. 2.32 and 2.35 in [20]).

(3) An octuple (A,H, ∂, ∂, T , T , γ , ⋆) satisfying conditions (1)–(5) above is called a Hermitian spectral data generalizing
the classical notion of Hermitian manifolds. Condition (6) is precisely the Kähler condition on a noncommutative
Hermitian manifold.

(4) The associated space of complex differential forms is described in Section 2.3.2 in [20] (in particular see Propn.
2.32), and for the notion of integration see Section 2.3.3.

Definition 2.4 of N = (1, 1) spectral data has an alternative description. One can introduce the following two
unbounded operators

D = d + d∗ , D = i(d − d∗)

(Caution: D is not the closure of D) which satisfy the relations

D2
= D

2
, {D,D} = 0

making the notion of N = (1, 1) spectral data an immediate generalization of a classical N = (1, 1) Dirac bundle [19,20].
Conversely, starting with D, D satisfying the above relations, one can define

d =
1
2
(D − iD ) , d∗

=
1
2
(D + iD ) .

For all ε > 0, the condition exp(−ε(dd∗
+ d∗d)) is a trace class operator is equivalent with exp(−εD2) is a trace class

operator.

Lemma 2.8. If the Hodge operator satisfy ⋆2 = 1 and [⋆, γ ] = 0, and the phase ζ = −1, then

(1) {γ , d} = 0 if and only if {γ ,D} = {γ ,D} = 0 ;

(2) ⋆d = −d∗⋆ if and only if {⋆,D} = [⋆,D ] = 0 .

Proof. Straightforward verification. □

Any N = (1, 1) spectral data gives rise to a N = 1 spectral data over the same algebra by taking D = d + d∗. The
converse, i.e. whether a N = 1 spectral data can be extended to N = (1, 1) spectral data, is true for the classical case of
manifolds [19]. However, in the noncommutative situation this is not obvious. Guided by the classical case of manifolds
a procedure of extension is suggested by Fröhlich et al. in [20], which we discuss now.

Let E be a finitely generated projective left module over A and E∗
:= HomA(E,A). Clearly, E∗ is also a left A-module

by the rule (a . φ)(ξ ) := φ(ξ )a∗, ∀ ξ ∈ E . Throughout the article, we will always write f.g.p. for notational brevity to
mean finitely generated projective. In the noncommutative situation a f.g.p. module represents a vector bundle over
noncommutative space.

Definition 2.9. A Hermitian structure on E is an A-valued positive-definite map ⟨. , .⟩A such that :

(a) ⟨ξ, ξ ′
⟩
∗
A = ⟨ξ ′, ξ⟩A , ∀ ξ, ξ ′

∈ E .
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(b) ⟨a . ξ , b . ξ ′
⟩A = a(⟨ξ, ξ ′

⟩A)b∗ , ∀ ξ, ξ ′
∈ E, ∀ a, b ∈ A.

(c) The map g : ξ ↦−→ Φξ from E to E∗, given by Φξ (η) = ⟨η, ξ⟩A , ∀ η ∈ E , gives a conjugate linear left A-module
isomorphism between E and E∗, i.e. g can be regarded as a metric on E . This property is referred as the self-duality
of E .

Any free A-module E0 = An has a Hermitian structure on it, given by ⟨ ξ, η ⟩A =
∑n

j=1 ξjη
∗

j for all ξ = (ξ1, . . . , ξq) ∈

E0 , η = (η1, . . . , ηq) ∈ E0. We refer this as the canonical Hermitian structure on E0. Let Ω1
D(A) be the A-bimodule

{
∑

aj[D, bj] : aj, bj ∈ A} of noncommutative 1-forms and d : A −→ Ω1
D(A), given by a ↦−→ [D, a], be the Dirac

dga differential [10]. Note that (da)∗ = −da∗ by definition.

Definition 2.10. Let E be a f.g.p. left A-module equipped with a Hermitian structure ⟨. , .⟩A. A compatible connection on
E is a C-linear map ∇ : E −→ Ω1

D(A) ⊗A E satisfying

(a) ∇(aξ ) = a(∇ξ ) + da ⊗ ξ, ∀ ξ ∈ E, a ∈ A ;

(b) ⟨ ∇ξ, η ⟩ − ⟨ ξ,∇η ⟩ = d⟨ ξ, η ⟩A ∀ ξ, η ∈ E .

Any connection extends uniquely to a C-linear map ∇ : Ω•

D(A) ⊗A E −→ Ω•+1
D (A) ⊗A E satisfying ∇(ω ⊗ ξ ) =

(−1)deg(ω)ω∇(ξ ) + dω ⊗ ξ . The associated curvature of a connection is the A-linear map Θ∇ : E −→ Ω2
D(A) ⊗A E

given by the composition ∇ ◦ ∇ .

The meaning of the equality (b) in Ω1
D(A) is, if ∇(η) =

∑
ωj ⊗ ηj ∈ Ω1

D(A) ⊗ E , then ⟨ ξ ,∇η ⟩ =
∑

⟨ξ, ηj⟩A ω
∗

j and
⟨∇η , ξ ⟩ =

∑
ωj⟨ηj, ξ⟩A .

A procedure to extend a N = 1 spectral data to a N = (1, 1) spectral data :
Start with a N = 1 spectral data (A,H,D, γ ) equipped with a real structure J [11,12]. That is, there exists an

anti-unitary operator J on H such that

J2 = εI , JD = ε′DJ , Jγ = ε′′γ J

for some signs ε, ε′, ε′′
= ±1 depending on KO-dimension n ∈ Z8 and satisfying

[JaJ∗, b] = [JaJ∗, [D, b]] = 0 ∀ a, b ∈ A .

The real structure J now enables us to equip the Hilbert space H with an A-bimodule structure

a . ξ . b := aJb∗J∗(ξ ) .

We can extend this to a right action of Ω1
D(A) := {

∑
j aj[D, bj] : aj, bj ∈ A} on H by the rule

ξ . ω := Jω∗J∗(ξ ) .

Assume that H contains a dense f.g.p. left A-module E equipped with a Hermitian structure ⟨. , .⟩A, and is stable under J
and γ . In particular, E is itself an A-bimodule. We make E ⊗A E into an inner-product space by the following rule :

⟨ξ ⊗ η , ξ ′
⊗ η′

⟩ := ⟨η , ⟨Jξ, Jξ ′
⟩A(η′)⟩H . (2.1)

Note that this is indeed an inner-product because J is an anti-linear map and ⟨. , .⟩A is linear in the first entry while ⟨. , .⟩H
is linear in the second entry. Let H̃ := E ⊗A E⟨ , ⟩. Define the anti-linear flip operator

Ψ : Ω1
D(A) ⊗A E −→ E ⊗A Ω

1
D(A)

ω ⊗ ξ ↦−→ Jξ ⊗ ω∗ .

It is easy to verify that Ψ is well-defined and satisfies Ψ (as) = Ψ (s)a∗, ∀ s ∈ Ω1
D(A) ⊗A E . Consider a compatible

connection

∇ : E −→ Ω1
D(A) ⊗A E

such that ∇ commutes with the grading γ on E ⊆ H, i.e. ∇γ ξ = (1 ⊗ γ )∇ξ for all ξ ∈ E . For each such connection ∇

on E , there is the following associated right-connection

∇ : E −→ E ⊗A Ω
1
D(A)

ξ ↦−→ −Ψ (∇J∗ξ )

Thus, we get a C-linear map (the so called ‘‘tensored connection’’)

∇̃ : E ⊗A E −→ E ⊗A Ω
1
D(A) ⊗A E

ξ1 ⊗ ξ2 ↦−→ ∇ξ1 ⊗ ξ2 + ξ1 ⊗ ∇ξ2
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Note that ∇̃ is not a connection in the usual sense because of the position of Ω1
D(A). Define the following two C-linear

maps

c , c : E ⊗A Ω
1
D(A) ⊗A E −→ E ⊗A E

c : ξ1 ⊗ ω ⊗ ξ2 ↦−→ ξ1 ⊗ ω . ξ2 ,

c : ξ1 ⊗ ω ⊗ ξ2 ↦−→ ξ1 . ω ⊗ γ ξ2 .

Now, introduce the following densely defined unbounded operators on H̃

D := c ◦ ∇̃ , D := c ◦ ∇̃

(Caution: D is not the closure of D). In order to obtain a set of N = (1, 1) spectral data on A, one has to find a specific
connection ∇ on a suitable dense Hermitian f.g.p. left A-module E such that

(a) The operators D and D become essentially self-adjoint on H̃,
(b) The relations D2

= D
2 and {D,D} = 0 are satisfied.

The Z2-grading on H̃ is simply the tensor product grading γ̃ := γ ⊗ γ , and the Hodge operator is taken to be ⋆ := 1⊗ γ

(In [20], this is mistakenly taken as ⋆ = γ ⊗ 1). The sextuple (A, H̃,D,D, γ̃ , ⋆) is a candidate of N = (1, 1) spectral data
extending the N = 1 spectral data (A,H,D, γ ). This Hodge operator additionally satisfies ⋆2 = 1 and [⋆, γ ] = 0. Hence,
Lemma 2.8 holds for this extension procedure for the phase ζ = −1.

Apart from the classical case of manifolds, existence of such suitable connection ∇ is known for the cases of
noncommutative 2-torus and fuzzy 3-sphere [20]. However, the general case remains open. This extension procedure
is recently studied in [23] in order to define the tensor product of N = (1, 1) spectral data. In the next section, we shall
see a class of examples arising from certain C∗-dynamical systems which satisfy this extension procedure.

3. Kähler structure on C∗-dynamical systems

Definition 3.1. A C∗-dynamical system is a tuple (A,G, α) where A is a unital C∗-algebra, G is a real Lie group and
α : G −→ Aut(A) is a strongly continuous group homomorphism (i.e. for all a ∈ A, the map g ↦→ αg (a) is continuous).

We will work with C∗-dynamical systems (A,G, α) equipped with a faithful G-invariant trace τ , i.e. τ (αg (a)) = τ (a)
for all g ∈ G. This is in line with [7,16,35]. Note that if the Lie group is compact and the action is ergodic then the unique
G-invariant state is a faithful trace on A [26]. We say that a ∈ A is smooth if the map g ↦→ αg (a) is in C∞(G,A). The
involutive algebra A∞

= {a ∈ A : a is smooth} is a norm dense subalgebra of A, called the smooth subalgebra. Note that
this is unital as well. One crucial property enjoyed by this subalgebra is that it is closed under the holomorphic function
calculus inherited from the ambient C∗-algebra A [22]. Henceforth, we will always work with the smooth subalgebra A∞

and denote it simply by A for notational brevity.
To begin with we recall a result in [17] which provides an explicit set of generators of the irreducible representations

of Cl(n) for all n, together with an explicit involution J and (if n is even) a grading operator γ . This is summarized in
below.

Proposition 3.2 ([17]). Consider a positive integer n and an irreducible representation of Cl(n) on a vector space V. Up to
unitary equivalence, it is determined by n many matrices γj such that

γ ∗

j = −γj , γjγk + γkγj = −2δjk.

If n is even, there is a Z2 grading operator γV satisfying γVγj = −γjγV for all j = 1, . . . , n. Moreover, there is an explicit
anti-isometry JV (charge conjugation) satisfying

(JV )2 = ε , JVγj = ε′γjJV , JVγV = ε′′γV JV

for some signs ε, ε′, ε′′
∈ {1,−1} depending on n modulo 8 :

n 0 2 4 6 1 3 5 7
ε + − − + + − − +

ε′
+ + + + − + − +

ε′′
+ − + −

Candidate of a N = 1 spectral data associated with C∗-dynamical systems:
Let (A,G, α, τ ) be a C∗-dynamical system equipped with a G-invariant faithful trace τ . Let dim(G) = n and N = 2⌊n/2⌋.

Let {X1, . . . , Xn} be a basis of the Lie algebra g of the Lie group G. Letting H = L2(A, τ ) the G.N.S Hilbert space, we obtain a
covariant representation of (A,G, α) onH. Note that there is a bijective correspondence between covariant representations
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of (A,G, α) and non-degenerate ⋆-representations of A⋊αG. We obtain the following densely defined symmetric operator
on H̃ = L2(A, τ ) ⊗ CN ,

D :=

n∑
j=1

∂j ⊗ γj

acting on the domain dom(D) = A ⊗ CN where, ∂j(a) :=
d
dt |t=0 αexp(tXj)(a) and γj as in the above Proposition. Note that

the map ∂ : g −→ Der(A) given by Xj ↦−→ ∂j, where Der(A) is the Lie algebra of derivations on A, is a Lie algebra
homomorphism i.e. [∂j, ∂ℓ] = ∂[j,ℓ]. Moreover, there is always a real structure J = J0 ⊗ JN , where J0 is the anti-linear
operator a ↦→ a∗ and JN = JV as in the above Proposition 3.2, satisfying

J2 = εI , JD = ε′DJ , JγN = ε′′γN J

(if grading γN = γV exists) for some signs ε, ε′, ε′′
= ±1 depending on n ∈ Z8 and satisfying the above mentioned table.

We also have

[JaJ∗, b] = [JaJ∗, [D, b]] = 0 ∀ a, b ∈ A .

It is known that D, defined above, admits a self-adjoint extension [21]. But the summability and compactness of the
resolvent of D is not guaranteed. So, if D is essentially self-adjoint with compact resolvent and gives the Θ-summability
(note that any finitely summable spectral triple is Θ-summable [9]), then we obtain a Θ-summable even spectral triple
(A, H̃,D, γN ) if n is even; otherwise odd spectral triple (A, H̃,D) if n is odd. However, existence of such a self-adjoint
extension of D is an intricate question and that is why we only get a candidate of a N = 1 spectral data.

Remark 3.3.

(a) It is known that if the Lie group G is compact then D, defined above, is essentially self-adjoint (Propn. 4.1 in [21]).
(b) If the Lie group G is compact and acts ergodically then we obtain a dim(G)-summable (and hence Θ-summable)

spectral triple (Thm. 5.4 in [21]), independent of the choice of the Lie algebra basis. This is the case for the
noncommutative n-torus AΘ .

(c) Compactness and ergodicity is a sufficient condition only. Recall the case of quantum Heisenberg manifolds [34]
where the Lie group acting is noncompact namely, the Heisenberg group. It is known [5,6] that one gets an honest
3-summable spectral triple in this case also, for a suitable choice of the Heisenberg Lie algebra basis.

(d) There is no characterization of C∗-dynamical systems known yet which gives genuine finite or Θ-summable spectral
triples by the above discussed method.

Guided by these, we start with a C∗-dynamical system (A,G, α, τ ) equipped with a G-invariant faithful trace τ , where
G is an even dimensional abelian Lie group, such that the candidate discussed above determines an honest N = 1 spectral
data (A,H,D, σ ) with σ the Z2-grading. Since the Lie algebra g is abelian, i.e. [Xj, Xℓ] = 0 for all j, ℓ ∈ {1, . . . , dim(G)},
we have [∂j, ∂ℓ] = 0. Our first objective is to show that this N = 1 spectral data always extends to N = (1, 1) spectral data
over A by the procedure of extension discussed in Section 2. Then we produce Kähler structure on A. The key ingredient
is the Grassmannian connection as we shall see. Let dim(G) = 2k and N = 2⌊dim(G)/2⌋

= 2k. Consider the dense finitely
generated free left A-module E := A ⊗ CN

⊆ H = L2(A, τ ) ⊗ CN equipped with the canonical Hermitian structure.
Clearly, E is stable under the real structure J = J0 ⊗ JN and the grading operator σ . Consider the following C-linear map

∇ : E −→ Ω1
D(A) ⊗A E

ξ ↦−→ (dξ1, . . . . . . , dξN )

for ξ = (ξ1, . . . , ξN ) ∈ E , where d : A −→ Ω1
D(A), given by a ↦→ [D, a], is the Dirac dga differential. This is the

Grassmannian connection on the free left A-module E and is easily seen to be compatible with the canonical Hermitian
structure given by ⟨ξ, η⟩ :=

∑N
j=1 ξjη

∗

j . We fix the standard canonical free A-module basis {e1, . . . , eN} of E = A ⊗ CN .
By abuse of notation, the same denotes the canonical linear basis of CN if no confusion arise.

Lemma 3.4. The Grassmannian connection ∇ : E −→ Ω1
D(A)⊗AE and its associated right connection ∇ : E −→ E⊗AΩ

1
D(A)

satisfy ∇ej = ∇ej = 0 ∀ j ∈ {1, . . . ,N}, and it commutes with the Z2-grading σ .

Proof. Clearly, ∇ej = 0 ∀ j ∈ {1, . . . ,N} by its definition. Note that, ∇(ej) = −Ψ (∇J∗ej). Since J = J0 ⊗ JN , ej =

1 ⊗ (0, . . . , 1, . . . , 0) ∈ A ⊗ CN and J∗N = εJN , we get

J∗ej = ε1 ⊗ JN (0, . . . , 1, . . . , 0)T

= ε1 ⊗ ((JN )1j, . . . , (JN )Nj)

=

N∑
ℓ=1

ε(JN )ℓjeℓ .
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Since, (JN )ℓj are scalars for all ℓ and ∇ is C-linear map satisfying ∇eℓ = 0, our claim follows. Finally, commutation of ∇

with the Z2-grading operator is easy to observe. □

Note that any element aei ⊗ bej of E ⊗A E can be written as ei.(J∗a∗J)⊗ bej (recall the right A-module structure on E),
and since the tensor is over A, this is same as ei ⊗ cej for some c ∈ A. Now, for any arbitrary element ei ⊗ aijej of E ⊗A E ,
the tensored connection ∇̃ becomes

∇̃(ei ⊗ aijej) = ∇ei ⊗ aijej + ei ⊗ ∇(aijej)
= ei ⊗ daij ⊗ ej .

So, we have

D(ei ⊗ aijej) := c ◦ ∇̃(ei ⊗ aijej) = ei ⊗ (daij) . ej (3.2)
D(ei ⊗ aijej) := c̄ ◦ ∇̃(ei ⊗ aijej) = ei . (daij) ⊗ σ ej

where, σ is the Z2-grading operator.

Proposition 3.5. The Hilbert space E ⊗A E is isomorphic to L2(A, τ )N
2

= L2(A, τ ) ⊗ CN2
.

Proof. Since E = A⊗CN , we have E ⊗A E is isomorphic with A⊗CN2
. Because E has the canonical Hermitian structure

on it, from the inner-product defined in Eq. (2.1), it follows that

⟨ξ ⊗ η , ξ ′
⊗ η′

⟩ = ⟨η , ⟨Jξ, Jξ ′
⟩A(η′)⟩H

=

∑
ℓ,j

⟨ηℓ , ξ
∗

j ξ
′

j η
′

ℓ⟩

=

∑
ℓ,j

τ
(
η∗

ℓξ
∗

j ξ
′

j η
′

ℓ

)
.

This is precisely the inner-product onA⊗CN2
given by the inner-product ⟨a, b⟩ := τ (a∗b) onA and the usual inner-product

on CN2
. The completion is the Hilbert space L2(A, τ )N

2
= L2(A, τ ) ⊗ CN2

, and this concludes the proof. □

Lemma 3.6. D and D are densely defined symmetric operators acting on the Hilbert space E ⊗A E .

Proof. We have

⟨D(ei ⊗ aijej), em ⊗ amℓeℓ⟩ − ⟨ei ⊗ aijej,D(em ⊗ amℓeℓ)⟩
= ⟨ei ⊗ (daij).ej, em ⊗ amℓeℓ⟩ − ⟨ei ⊗ aijej, em ⊗ (damℓ).eℓ⟩
= ⟨(daij).ej, ⟨ei, em⟩A(amℓeℓ)⟩ − ⟨aijej, ⟨ei, em⟩A(damℓ).eℓ⟩
= δim

(
⟨(daij).ej, amℓeℓ⟩ − ⟨aijej, (damℓ).eℓ⟩

)
= ⟨(daij).ej, aiℓeℓ⟩ − ⟨aijej, (daiℓ).eℓ⟩

=

⟨ 2k∑
r=1

∂r (aij) ⊗ (γr1j, . . . , γrNj) , aiℓeℓ
⟩
−

⟨
aijej ,

2k∑
r=1

∂r (aiℓ) ⊗ (γr1ℓ, . . . , γrNℓ)
⟩

=

2k∑
r=1

⟨(∂r (aij)γr1j, . . . , ∂r (aij)γrNj), (0, . . . , aiℓ, . . . , 0)⟩

−⟨(0, . . . , aij, . . . , 0), (∂r (aiℓ)γr1ℓ, . . . , ∂r (aiℓ)γrNℓ)⟩

=

2k∑
r=1

τ ((∂r (aij)γrℓj)∗aiℓ) − τ (a∗

ij∂r (aiℓ)γrjℓ)

=

2k∑
r=1

τ
(
∂r (a∗

ij)γrℓjaiℓ
)
+ τ

(
a∗

ij∂r (aiℓγrℓj)
)

=

2k∑
r=1

τ

(
∂r (a∗

ijγrℓjaiℓ)
)

Here, we are using the fact that for all r ∈ {1, . . . , 2k}, γ ∗
r = −γr . Hence, (γr )ℓj = −(γr )jℓ. Now, for any a ∈ A,

τ (∂r (a)) = τ

( d
dt

|t=0 αexp(tXr )(a)
)

= 0

for all r ∈ {1, . . . , 2k}, because τ is a G-invariant trace. This proves that D is a symmetric operator. Similarly, one can
show for D. □
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Proposition 3.7. Both D and D are essentially self-adjoint operators acting on the Hilbert space E ⊗A E ∼= L2(A, τ )N
2
.

Proof. Observe that for any ξ = ei ⊗ aijej ∈ E ⊗A E , we can write

ξ = (0, . . . , (0, . . . , aij, . . . , 0)  
ith place ,N tuple

, . . . , 0)

  
N tuple

∈ AN2

and hence,

D(ξ ) = (0, . . . ,
2k∑
r=1

∂r (aij) ⊗ γr (ej)  
∈ L2(A,τ )N

, . . . , 0) ∈ L2(A, τ )N
2

= ei ⊗ D(aijej)

Now,

D(ξ ) = ei . daij ⊗ σ ej
= −εJd(a∗

ij)Jei ⊗ σ ej

= −ε′

( 2k∑
r=1

∂r (aij) ⊗ γr (ei)
)

⊗ σ ej

= −ε′D(aijei) ⊗ σ ej
and observe that

ei ⊗ aijej = ei . aij ⊗ ej
= Ja∗

ijJ
∗ei ⊗ ej

= εJa∗

ij(1 ⊗ JNei) ⊗ ej
= ε(aij ⊗ J2Nei) ⊗ ej
= aijei ⊗ ej .

Since, E ⊗A E ∼= L2(A, τ )N
2
(Proposition 3.5), we see that the operator D is of the form 1N ⊗ D and the operator D is of

the form −ε′D ⊗ σ , both acting on AN2
⊆ L2(A, τ )N

2
. That is,

D =

2k∑
j=1

∂j ⊗ 1N ⊗ γj and D = −ε′

2k∑
j=1

∂j ⊗ γj ⊗ σ

acting on L2(A, τ )N
2 ∼= L2(A, τ )⊗CN

⊗CN . Since, we have assumed that the C∗-dynamical system (A,G, α, τ ) gives us an
honest N = 1 spectral data

(
A, L2(A, τ )⊗CN ,D =

∑2k
j=1 ∂j ⊗γj

)
; D is essentially self-adjoint on H = L2(A, τ )⊗CN . Since

the domain AN2
is a core for the essentially self-adjoint operator 1N ⊗D it follows that D and similarly D are essentially

self-adjoint operators. □

Remark 3.8. Since we are dealing with even dimensional Lie groups, ε′
= +1 by the table mentioned in Proposition 3.2.

However, we intend not to discard ε′ in the expression of D for the time being for a specific reason. This will be explained
towards the end of this section.

Lemma 3.9. We have the relations D2
= D

2 and {D,D} = 0.

Proof. Since σ is a Z2-grading operator on (A,H,D), we have {D, σ } = 0. This gives {D,D} = 0. Now,

D2
= −

( 2k∑
r=1

∂2r

)
⊗ 1N ⊗ 1N +

∑
i<j

[∂i, ∂j] ⊗ 1N ⊗ γiγj

= −

( 2k∑
r=1

∂2r

)
⊗ 1N ⊗ 1N +

∑
i<j

∂[i,j] ⊗ 1N ⊗ γiγj

= −

( 2k∑
r=1

∂2r

)
⊗ 1N ⊗ 1N

because g is abelian. One gets exactly equal expression for D 2. Hence, as operators on L2(A, τ )N
2
we get D2

= D
2. □
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Remark 3.10. This is the place where we use the fact that g is abelian to conclude D2
= D

2. Unless this equality holds
we can not have d 2

= 0 for d =
1
2 (D − iD).

Lemma 3.11. We have the following :

(i) For all a ∈ A, [d, a] extends to a bounded operator acting on the Hilbert space E ⊗A E , where d =
1
2 (D − iD);

(ii) exp(−εD2) is a trace class operator for all ε > 0.

Proof. Both these facts follow from our assumption that the C∗-dynamical system (A,G, α, τ ) gives us an honest N = 1
spectral data

(
A,H = L2(A, τ )⊗CN ,D =

∑2k
j=1 ∂j ⊗ γj

)
, and the explicit expressions of D and D in Proposition 3.7. Note

that Tr(exp(−εD2)) = NTr(exp(−εD2)) for all ε > 0. □

Proposition 3.12. Let G be an even dimensional abelian Lie group and (A,G, α, τ ) be a C∗-dynamical system equipped with
a faithful G-invariant trace τ . Whenever it determines a N = 1 spectral data (A,H,D, σ ), it always extends to N = (1, 1)
spectral data over A.

Proof. Combining Proposition 3.7 and Lemmas 3.9, 3.11 we see that the only remaining part is to produce a Z2-grading
and a Hodge operator. We have two self-adjoint unitaries γ := 1 ⊗ σ ⊗ 1N and γ ′

:= 1 ⊗ 1N ⊗ σ acting on the Hilbert
space L2(A, τ )N

2
= L2(A, τ ) ⊗ CN

⊗ CN , satisfying

{D, γ ′
} = {D, γ } = 0 , [D, γ ] = [D, γ ′

] = 0 .

The Z2-grading is obtained by taking γ̃ := γ γ ′
= 1 ⊗ σ ⊗ σ . Clearly, {γ̃ ,D} = {γ̃ ,D} = 0. Finally, the Hodge operator is

given by ⋆ := γ ′
= 1 ⊗ 1N ⊗ σ acting on E ⊗A E = L2(A, τ )N

2
, and it satisfies {⋆,D} = [⋆,D ] = 0, ⋆2 = 1, [⋆, γ̃ ] = 0.

This concludes the proof in view of Lemma 2.8 by taking the phase ζ = −1. □

An immediate corollary worth mentioning is the following.

Corollary 3.13. Let G be an even dimensional abelian Lie group and (A,G, α, τ ) be a C∗-dynamical system equipped with a
faithful G-invariant trace τ . Whenever it determines a spectral triple (A,H,D), where the Hilbert space H = L2(A, τ ) ⊗ CN

with N = 2⌊dim(G)/2⌋, the Dirac operator D ⊗ 1 acting on H ⊗ CN decomposes as D = d + d∗ with d2 = 0.

We now state and prove our main theorem.

Theorem 3.14. Let G be an even dimensional abelian Lie group and (A,G, α, τ ) be a C∗-dynamical system equipped with
a faithful G-invariant trace τ . Whenever it determines a N = 1 spectral data (A,H,D, σ ), it always extends to N = (2, 2)
Kähler spectral data over A. That is, A inherits a (noncommutative) Kähler structure.

The proof is a bit long and to make it transparent we first break it into the following three Lemmas.

Lemma 3.15. The following bounded self-adjoint operator

T : L2(A, τ ) ⊗ CN
⊗ CN

−→ L2(A, τ ) ⊗ CN
⊗ CN

T :=

2k∑
j=1

iε′

2
1 ⊗ γj ⊗ γjσ

commutes with all elements of A ⊆ B
(
L2(A, τ )N

2
)
and [T , d ] = d, where d =

1
2 (D − iD).

Proof. Recall that L2(A, τ )N
2

= E ⊗A E (Proposition 3.5) and A is represented on E ⊗A E by its left action on E . Clearly,
T then commutes with A ⊆ B

(
L2(A, τ )N

2
)
. Recall the expressions of D and D from Proposition 3.7. We now have the

following,

[ −ε′T , D − iD ]

=

2k∑
j=1

[ 1
2i

1 ⊗ γj ⊗ γjσ , D − iD
]

=

2k∑
j=1

1
2i

[1 ⊗ γj ⊗ γjσ , 1 ⊗ D] +
ε′

2
[1 ⊗ γj ⊗ γjσ , D ⊗ σ ]
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=

2k∑
j,r=1

1
2i

[1 ⊗ γj ⊗ γjσ , ∂r ⊗ 1N ⊗ γr ] +
ε′

2
[1 ⊗ γj ⊗ γjσ , ∂r ⊗ γr ⊗ σ ]

=

2k∑
j,r=1

1
2i
∂r ⊗ γj ⊗ (γjσγr − γrγjσ ) +

ε′

2
∂r ⊗ (γjγr + γrγj) ⊗ γj

=

2k∑
j,r=1

1
2i
∂r ⊗ γj ⊗ (−γjγr − γrγj)σ +

ε′

2
∂r ⊗ (γjγr + γrγj) ⊗ γj

=

2k∑
j=1

1
i
∂j ⊗ γj ⊗ σ − ε′∂j ⊗ 1N ⊗ γj

=
1
i
(D ⊗ σ ) − ε′(1 ⊗ D)

= iε′D − ε′D

= −ε′(D − iD) .

Hence, for d =
1
2 (D − iD) we see that [T , d ] = d. □

Lemma 3.16. If there exists a skew-Hermitian matrix Ĩ ∈ MN2 (C) such that the bounded skew-adjoint operator I = 1 ⊗ Ĩ
acting on L2(A, τ ) ⊗ CN2

satisfies the following,

(1) [ I, T ] = 0
(2) [ I, γ̃ ] = 0
(3) [ I, ⋆] = 0
(4) [ I, [ I, d ]] = −d

then the N = (1, 1) spectral data obtained in Proposition 3.12 extends to Hermitian spectral data over A, i,e. A inherits a
complex structure.

Proof. We want to write d :=
1
2 (D − iD) as ∂ + ∂ where both ∂, ∂ are differentials and T = T + T such that all

the conditions in Definition 2.6 except (6) are satisfied. Our idea of extending a N = (1, 1) spectral data to a Hermitian
spectral data is the following: if there exists such an I, we try to decompose T as T + T while I = i(T − T ). Then, define
a new differential d2 = [ I, d ]. This will impose certain constraints on I. We also have Propn. 2.27 in [20] as a reference.
Now, let us verify that these ideas actually work.

Consider the densely defined operator d2 = [ I, d ] such that [ I, d2] = −d. This gives I2d− 2IdI + dI2
= −d. Hence,

IdId =
1
2dI

2d = dIdI. Then,

d22 = [I, d][I, d]

= IdId − dI2d + dIdI

= 0

i,e. d2 is a differential. Now, define

∂ :=
1
2
(d − id2) and ∂ :=

1
2
(d + id2) .

Then, d = ∂+∂ and part (1) in Definition 2.6 holds. Observe that {d, d2} = 0. Both d and d2 are anticommuting differentials
which show that both ∂ and ∂ are differentials. It is easy to check that {∂, ∂} = 0. Now, define

T :=
1
2
(T − iI) and T :=

1
2
(T + iI) .

Then T = T + T and [T , T ] =
i
2 [T , I] = 0. Now,

[T , ∂] =
1
4
([T , d] − i[T , d2] − i[I, d] − [I, d2])

=
1
4
(d − id2 − i[T − iI, d2])

=
1
2
∂ −

i
2
[T , d2] .
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Similarly, one can show that

[T , ∂] =
1
2
∂ −

i
2
[T , d2] ,

[T , ∂] =
1
2
∂ +

i
2
[T , d2] ,

[T , ∂] =
1
2
∂ +

i
2
[T , d2] .

Now, by Lemma 3.15 we know that [T , d ] = d. Hence,

[T , d2] =
1
2
(T Id − T dI − IdT + dIT − i[I, [I, d]])

=
1
2
(I[T , d] − [T , d]I − i[I, [I, d]])

=
1
2
(Id − dI − i[I, [I, d]])

=
1
2
(d2 − i[I, [I, d]]) .

Similarly, one can show that

[T , d2] =
1
2
(d2 + i[I, [I, d]]) .

Hence, the following two relations

[T , d2] = i∂ and [ T , d2] = −i∂

together is equivalent to

[ I, [ I, d]] = −d .

This shows that part (2) in Definition 2.6 holds. Both I and T commuting with A proves that [T , a] = [T , a] = 0 for all
a ∈ A. Now,

[d2, a] = [[ I, d], a]
= [ I, [d, a]]

Since [d, a] extends to a bounded operator, we get that both [∂, a] and [∂, a] extend to bounded operators for all a ∈ A.
This shows that part (3) in Definition 2.6 holds. Now,

{γ̃ , d2} = γ̃ [I, d] + [I, d]γ̃
= I{γ̃ , d} − {γ̃ , d}I
= 0

since, {γ̃ , d} = 0. This shows that {γ̃ , ∂} = {γ̃ , ∂} = 0 i.e. part (4) in Definition 2.6 holds. Finally, observe that

⋆∂ + ∂
∗

⋆ = −i(⋆d2 + d∗

2⋆)

⋆∂ + ∂∗⋆ = i(⋆d2 + d∗

2⋆)

Now, using the fact that I is skew-adjoint we see that

⋆d2 + d∗

2⋆ = ⋆[I, d] + [I, d]∗ ⋆
= ⋆Id − ⋆dI + d∗I∗ ⋆−I∗d∗ ⋆

= I(⋆d + d∗⋆) − (⋆d + d∗⋆)I
= 0

which shows that part (5) in Definition 2.6 holds for the phase ζ = −1. Hence, existence of such suitable skew-adjoint
operator I guarantees that the N = (1, 1) spectral data obtained in Proposition 3.12 extends to Hermitian spectral data
over A, i.e. A inherits a complex structure. □

Lemma 3.17. The Hermitian spectral data obtained in previous Lemma 3.16 is a N = (2, 2) Kähler spectral data over A, i.e.
A inherits a Kähler structure, if and only if {d, d∗

2} = {d∗, d2} = 0 with d2 = [ I, d ].
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Proof. Recall part (6) in Definition 2.6 which is precisely the Kähler condition. Observe that

{∂, ∂∗
} = ∂∂∗

+ ∂∗∂

= (d − id2)(d∗
+ id∗

2) + (d∗
+ id∗

2)(d − id2)
= {d, d∗

} + {d2, d∗

2} + i{d, d∗

2} − i{d∗, d2}

Similarly,

{∂, ∂
∗

} = {d, d∗
} + {d2, d∗

2} − i{d, d∗

2} + i{d∗, d2}

{∂, ∂
∗

} = {d, d∗
} − {d2, d∗

2} − i{d, d∗

2} − i{d∗, d2}

{∂, ∂∗
} = {d, d∗

} − {d2, d∗

2} + i{d, d∗

2} + i{d∗, d2}

This shows that the following conditions

(1) {d, d∗

2} = {d∗, d2} = 0
(2) {d, d∗

} = {d2, d∗

2}

are necessary and sufficient for the complex structure obtained in Lemma 3.16 to extend to a Kähler structure on A.
However, condition (2) follows from condition (1) because

{d, d∗
} = dd∗

+ d∗d
= −[ I, [ I, d ]]d∗

− d∗
[ I, [ I, d ]]

= −Id2d∗
+ d2Id∗

− d∗Id2 + d∗d2I
= (d2Id∗

− d2d∗I) + d2d∗I + (Id∗d2 − d∗Id2) − Id∗d2 + d∗d2I − Id2d∗

= (d2d∗

2 + d∗

2d2) + {d2, d∗
}I − I{d∗, d2}

= {d2, d∗

2}

if {d∗, d2} = 0. Hence, the condition {d, d∗

2} = {d∗, d2} = 0, with d2 = [ I, d ], is necessary and sufficient for the complex
structure obtained in Lemma 3.16 to become a Kähler structure on A. □

Proof of Theorem 3.14. Let dim(G) = 2k and N = 2k. We first produce a skew-Hermitian matrix Ĩ ∈ MN2 (C) such
that the skew-adjoint operator I = 1 ⊗ Ĩ acting on L2(A, τ ) ⊗ CN2

satisfy all the conditions of Lemma 3.16. Note that
MN2 (C) = MN (C) ⊗C MN (C). Consider the Clifford algebra Cl(2k) and suppose that {e1, . . . , e2k} be a generating set.
Consider the following elements

A(ℓ, j) := 1 ⊗ eℓej + eℓej ⊗ 1 (3.3)

in Cl(2k) ⊗ Cl(2k) for each pair (ℓ, j) with ℓ < j and ℓ, j ∈ {1, . . . , 2k}. Each A(ℓ, j) commutes with the elements
e1 . . . e2k ⊗ e1 . . . e2k and 1 ⊗ e1 . . . e2k of Cl(2k) ⊗ Cl(2k), as e1 . . . e2k lies in the center of Cl(2k). Now, it is easy to verify
that for each such pair (ℓ, j), the element A(ℓ, j) commutes with

∑
r ̸=ℓ,j er ⊗ er in Cl(2k)⊗Cl(2k). Observe that A(ℓ, j) also

commutes with eℓ⊗ eℓ+ ej ⊗ ej. Hence, for each such pair (ℓ, j), A(ℓ, j) will commute with
∑2k

r=1 er ⊗ er in Cl(2k)⊗Cl(2k).
Now, let π : Cl(2k) −→ MN (C), given by π : er ↦→ γr , be the irreducible representation in Proposition 3.2. The element∏2k

j=1 ej ∈ Cl(2k) corresponds to the grading operator σ if k is even and −iσ if k is odd under the representation π (see [17]
for detail). Hence,

(π ⊗ π )(A(ℓ, j)) = 1 ⊗ γℓγj + γℓγj ⊗ 1

are skew-Hermitian matrices in MN (C) ⊗ MN (C) such that the skew-adjoint operators 1 ⊗ I(ℓ,j) := 1 ⊗ (π ⊗ π )(A(ℓ, j))
commute with T , γ̃ and ⋆ (recall the expression of T from Lemma 3.15 and that of γ̃ and ⋆ from Proposition 3.12).
Observe that

[1 ⊗ I(ℓ,j), d ] =

2k∑
r=1

1
2
∂r ⊗ 1 ⊗ [γℓγj, γr ] +

iε′

2
∂r ⊗ [γℓγj, γr ] ⊗ σ

= ∂ℓ ⊗ 1 ⊗ γj − ∂j ⊗ 1 ⊗ γℓ + iε′(∂ℓ ⊗ γj ⊗ σ − ∂j ⊗ γℓ ⊗ σ )

and hence,

[1 ⊗ I(ℓ,j), [1 ⊗ I(ℓ,j), d ] ] = −2(∂ℓ ⊗ 1 ⊗ γℓ + ∂j ⊗ 1 ⊗ γj) − 2iε′(∂ℓ ⊗ γℓ ⊗ σ + ∂j ⊗ γj ⊗ σ ) .

Hence, if we consider I = 1 ⊗ Ĩ with

Ĩ =
1
2

(
I(1,2) + I(3,4) + · · · + I(2k−1,2k)

)
then we have [ I, [ I, d ] ] = −d along with [ I, T ] = [ I, γ̃ ] = [ I, ⋆] = 0. Hence, by Lemma 3.16, the N = 1 spectral
data (A,H,D, σ ) extends to Hermitian spectral data over A, i.e. A inherits a complex structure.
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We now show that the condition in Lemma 3.17 is also satisfied. For d2 := [ I, d ], note that

d2 =

2k∑
j=1, j odd

1
2
(∂j ⊗ 1 ⊗ γj+1 − ∂j+1 ⊗ 1 ⊗ γj) +

iε′

2
(∂j ⊗ γj+1 ⊗ σ − ∂j+1 ⊗ γj ⊗ σ )

and recall that d∗
=

∑2k
ℓ=1

1
2 (∂ℓ ⊗ 1 ⊗ γℓ − iε′∂ℓ ⊗ γℓ ⊗ σ ). Then,

4{d∗, d2}

=

2k∑
j=1, j odd

2k∑
ℓ=1

(∂ℓ∂j ⊗ 1 ⊗ {γℓ, γj+1} − ∂ℓ∂j+1 ⊗ 1 ⊗ {γℓ, γj} + ∂ℓ∂j ⊗ {γℓ, γj+1} ⊗ 1

−∂ℓ∂j+1 ⊗ {γℓ, γj} ⊗ 1)

= −4
2k∑

j=1, j odd

∂j+1∂j ⊗ 1 ⊗ 1 + 4
2k∑

j=1, j odd

∂j∂j+1 ⊗ 1 ⊗ 1

= 0

since, g is abelian. Similarly, one can verify that {d, d∗

2} = 0. Hence, the N = 1 spectral data (A,H,D, σ ) extends to
N = (2, 2) Kähler spectral data over A, i.e. A inherits Kähler structure. This completes the proof. □

Corollary 3.18. If (A,T2k, α) is a C∗-dynamical system such that the action of T2k is ergodic, then A inherits a Kähler
structure.

Proof. Since T2k is compact and the action is ergodic, the unique T2k-invariant state becomes a faithful trace [26], and
we have a 2k-summable (and hence Θ-summable) even spectral triple (Thm. 5.4 in [21]). Conclusion now follows from
Theorem 3.14. □

Corollary 3.19. For n even, the noncommutative n-torus AΘ satisfies the N = (2, 2) Kähler spectral data, i.e. these are
noncommutative Kähler manifolds.

Proof. It is well known that the C∗-dynamical system (AΘ ,Tn, α) on the noncommutative n-torus AΘ , where αz(Uk) :=

zkUk, k = 1, . . . , n, equipped with a unique Tn-invariant faithful trace given by

τ

(∑
α(m1,...,mn)U

m1
1 . . .Umn

n

)
:= α0

with α(m1,...,mn) ∈ S(Zn), gives a n-summable (and hence Θ-summable) spectral triple(
AΘ , ℓ

2(Zn) ⊗ C2⌊n/2⌋
, D :=

n∑
j=1

∂j ⊗ γj

)
.

This spectral triple is even if n is even and we obtain a N = 1 spectral data on AΘ . Conclusion now follows from
Theorem 3.14. □

Remark 3.20. As mentioned earlier in the Introduction, characterizing holomorphic structures on n-dimensional man-
ifolds, with n > 2, via positive Hochschild cocycles is still open. That is why methods in [10] do not extend to
noncommutative higher dimensional tori.

Proposition 3.21. There can be obtained at least
∏ dim(G)

j=1, j odd(dim(G) − j) different Kähler structures in Theorem 3.14.

Proof. Let dim(G) = 2k. In the previous Theorem 3.14, we produced the differential d2 = [ I, d ] by taking a particular
I = 1 ⊗ Ĩ where Ĩ =

1
2

(
I(1,2) + I(3,4) + . . .+ I(2k−1,2k)

)
. We now show that there are

∏ 2k−1
j=1, j odd(2k − j) different choice

for Ĩ built out of I(ℓ,j) with ℓ < j and ℓ, j ∈ {1, . . . , 2k}. First choose I(1,j) with j > 1. Total number of choice is 2k − 1.
Case 1: If j = 2, next choose I(3,r) with r > 3.
Case 2: If j > 2, next choose I(2,r) so that r > 2 and r ∈ {1, 2, . . . , 2k} ∖ {1, 2, j}.
Hence for each I(1,j), we get a total 2k− 3 different choice to consider the next I(3,r) or I(2,r) accordingly as j = 2 or j > 2
respectively. Now,
Case 1: If j = 2 and I(3,r) with r > 3 have been chosen, next consider I(s,t) with s = min{{1, 2, . . . , 2k}∖ {1, 2, 3, r}} and
t > s with t ∈ {1, 2, . . . , 2k} ∖ {1, 2, 3, r}.
Case 2: If j > 2 and I(2,r) with r > 2 have been chosen, next consider I(s,t) with s = min{{1, 2, . . . , 2k} ∖ {1, 2, j, r}} and
t > s with t ∈ {1, 2, . . . , 2k} ∖ {1, 2, j, r}.
Hence for each I(3,r), we get a total 2k − 5 different choice to choose the next I(s,t), and similar choice for each I(2,r).
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Until this we get a total (2k − 1)(2k − 3)(2k − 5) different choice. Proceed like this to choose the next I(p,q) with I(s,t)

being chosen. We will finally get total
∏ 2k−1

j=1, j odd(2k − j) different choice for Ĩ. It is a purely algebraic verification that all
these choice of I = 1⊗ Ĩ give us different d2 satisfying [ I, [ I, d] ] = −d and {d∗, d2} = {d, d∗

2} = 0. Thus, one can obtain∏ 2k−1
j=1, j odd(2k − j) different Kähler structures in previous Theorem 3.14.
These various choice of indices (m, n) in I(m,n) at each stage is best understood by a directed tree. For example, if

dim(G) = 2k = 2 then there is a unique choice of Ĩ namely, Ĩ =
1
2I(1,2). If dim(G) = 2k = 4 then we have the following

tree for various choice of I(ℓ,j) at each stage,

(1,2)

(3,4)

(1,3)

(2,4)

(1,4)

(2,3)

Here, the top index represents different possible choice of I(1,j) and we get total three different choice of Ĩ namely,
Ĩ =

1
2 (I(1,2) + I(3,4)), Ĩ =

1
2 (I(1,3) + I(2,4)) and Ĩ =

1
2 (I(1,4) + I(2,3)). If dim(G) = 2k = 6 then we have the following tree

for various choice of I(i,j) at each stage,

(1,2)

(3,4)

(5,6)

(3, 5)

(4,6)

(3,6)

(4,5)

(1,3)

(2,4)

(5,6)

(2,5)

(4,6)

(2,6)

(4,5)

(1,4)

(2,3)

(5,6)

(2,5)

(3,6)

(2,6)

(3,5)

(1,5)

(2,3)

(4,6)

(2,4)

(3,6)

(2,6)

(3,4)

(1,6)

(2,3)

(4,5)

(2,4)

(3,5)

(2,5)

(3,4)

The top index represents different possible choice of I(1,j) and we get total fifteen different choice of Ĩ given by half times
the addition of each vertical row along their prescribed path. Observe that the Ĩ given by half times the addition of the
first vertical row, namely Ĩ =

1
2 (I(1,2) + I(3,4) + I(5,6)), is the one considered in Theorem 3.14. □

Remark 3.22. We do not know yet whether some or all of these different Kähler structures are unitary equivalent.

Explanation of Remark 3.8. We now explain why we did not discard ε′ in every places from Proposition 3.7 up to
Theorem 3.14. Reason is that as pointed out in [17], in the even case there are actually two possible real structures J±
that differ by multiplication by the grading operator. None of them should be preferred as they are perfectly on the same
footing. The table mentioned in Proposition 3.2 has the following extension :

n 0 2 4 6 0 2 4 6 1 3 5 7
ε + − − + + + − − + − − +

ε′
+ + + + − − − − − + − +

ε′′
+ − + − + − + −

The first column represents the real structure J+ and the second is for J−. To accommodate both the possible real
structures we did not discard ε′. Hence, accordingly as ε′

= +1 or −1, both ∂ and ∂ change and we actually obtain two
different Kähler structures in Theorem 3.14, and therefore 2

∏ dim(G)
j=1, j odd(dim(G) − j) different Kähler structures in view of

Proposition 3.21. However, it turns out that these two set of Kähler differentials corresponding to J± are unitary conjugate
to each other. If we denote the Kähler differentials obtained in Theorem 3.14 by ∂± and ∂± corresponding to the real
structures J± , then one can verify the following relationship

(1 ⊗ σ ⊗ 1) ∂+ = ∂− (1 ⊗ σ ⊗ 1) and (1 ⊗ σ ⊗ 1) ∂+ = ∂− (1 ⊗ σ ⊗ 1) .

Here, the operator 1 ⊗ σ ⊗ 1, which is a self-adjoint unitary acting on L2(A, τ ) ⊗ CN
⊗ CN , is precisely the product of

the Z2-grading and the Hodge operator obtained in Proposition 3.12. Being unitary equivalent we do not distinguish the
Kähler structures {∂+, ∂+} and {∂−, ∂−}.

Corollary 3.23. For the noncommutative two-torus Aθ , with irrational θ , represented faithfully on the Hilbert space
ℓ2(Z2) ⊗ C2 ⨁

ℓ2(Z2) ⊗ C2 ∼= ℓ2(Z2) ⊗ C4 by diagonal operator, one has

γ1 = i
(
0 1
1 0

)
, γ2 = i

(
0 −i
i 0

)
, σ =

(
1 0
0 −1

)
.
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The Dirac operator is given by

D =

⎛⎜⎝ 0 i∂1 + ∂2 0 0
i∂1 − ∂2 0 0 0

0 0 0 i∂1 + ∂2
0 0 i∂1 − ∂2 0

⎞⎟⎠
with the grading operator γ̃ and the Hodge operator ⋆ as

γ̃ =

⎛⎜⎝1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎠ , ⋆ =

⎛⎜⎝1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠ .

Two set of unitary equivalent Kähler differentials are given by

∂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1
2
(i∂1 − ∂2) 0 0 0

iε′

2
(i∂1 − ∂2) 0 0 0

0 −
iε′

2
(i∂1 − ∂2)

1
2
(i∂1 − ∂2) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

∂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
(i∂1 + ∂2)

iε′

2
(i∂1 + ∂2) 0

0 0 0 −
iε′

2
(i∂1 + ∂2)

0 0 0
1
2
(i∂1 + ∂2)

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
with ε′

= ±1, and the nilpotent differential is d := ∂ + ∂ with d + d∗
= D.

Proof. The matrices γ1, γ2 and σ are obtained from the explicit representation of Cl(2) on M2(C) (see Proposition 3.2).
From Proposition 3.12, since d =

1
2 (D − iD ), we get

d =
1
2
(∂1 ⊗ 1 ⊗ γ1 + ∂2 ⊗ 1 ⊗ γ2) +

iε′

2
(∂1 ⊗ γ1 ⊗ σ + ∂2 ⊗ γ2 ⊗ σ )

and from Theorem 3.14, we get

d2 =
1
2
(∂1 ⊗ 1 ⊗ γ2 − ∂2 ⊗ 1 ⊗ γ1) +

iε′

2
(∂1 ⊗ γ2 ⊗ σ − ∂2 ⊗ γ1 ⊗ σ )

The expression for the Dirac operator D is then clear since, D = d + d∗
= D. Two set of unitary equivalent Kähler

differentials are given by ∂ =
1
2 (d − id2) and ∂ =

1
2 (d + id2) with ε′

= ±1. □

Remark 3.24. The differential ∂ in Corollary 3.23 coincides with the complex structure obtained in [10] from cyclic
cohomology and using the equivalence of conformal and complex structures in two dimensions. This is further considered
in [32]. We will come back to it again towards the end of Section 5.

4. Space of complex differential forms on noncommutative 2n-tori

In this section, we work with the complex (in fact Kähler) structure obtained in Theorem 3.14 to compute the space
of complex differential forms on all noncommutative even dimensional tori. Recall the space of N = (1, 1) differential
forms (Section 2.2.2 in [20]) and complex differential forms (Section 2.3.2 in [20]).

Definition 4.1 ([33]). Let A be the universal C∗-algebra generated by 2n unitaries U1, . . . ,U2n satisfying UjUℓ =

exp(2π iΘℓj)UℓUj, where Θ is a real 2n × 2n skew-symmetric matrix such that the lattice ∧Θ generated by its columns
makes ∧Θ + Z2n dense in R2n. The compact connected Lie group T2n acts on A by αz(Uℓ) = zℓUℓ, ℓ = 1, . . . , 2n. Let AΘ

denote the smooth subalgebra of A under this action. Via Fourier transform one obtains

AΘ :=

{∑
α(j1,...,j2n)U

j1
1 . . .U

j2n
2n : α(j1,...,j2n) ∈ S(Z2n)

}
.

Then, AΘ is a unital spectrally invariant subalgebra of A , called the noncommutative 2n-torus.
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Proposition 4.2. For the noncommutative 2n-torus AΘ , as an AΘ-bimodule we have,

(1) Ω0
d (AΘ ) ∼= AΘ ,

(2) Ωℓ
d (AΘ ) := span{a

∏ℓ

j=1[d, bj] : a, bj ∈ AΘ} ∼= A
2n!

ℓ!(2n−ℓ)!
Θ ∀ 1 ≤ ℓ ≤ 2n,

(3) Ωℓ
d (AΘ ) ∼= {0} ∀ ℓ > 2n;

where, d is the operator constructed along the lines of the previous section.

Proof. Part (1) is obvious. Recall that d =
1
2 (D − iD), where D = 1 ⊗ D and D = −ε′D ⊗ σ acting on H = E ⊗A E ∼=

L2(A, τ )N
2
(see Propositions 3.5 and 3.7). Hence, for

d =
1
2

2n∑
j=1

(∂j ⊗ 1 ⊗ γj + iε′∂j ⊗ γj ⊗ σ )

we see that

[d, a] =
1
2

2n∑
j=1

(
∂j(a) ⊗ 1 ⊗ γj + iε′∂j(a) ⊗ γj ⊗ σ

)

=

2n∑
j=1

∂j(a) ⊗

(
1 ⊗

1
2
γj +

iε′

2
γj ⊗ σ

)
.

We claim that the set {1 ⊗
1
2γj +

iε′
2 γj ⊗ σ : j = 1, . . . , 2n} is a linearly independent subset of MN (C) ⊗ MN (C). Consider

2n∑
j=1

αj(1 ⊗
1
2
γj +

iε′

2
γj ⊗ σ ) = 0 (4.4)

with αj ∈ C for all j. Multiplying this Eq. (4.4) by 1 ⊗ σ from the right, and then again from the left, we get
2n∑
j=1

αj(−1 ⊗
1
2
γj +

iε′

2
γj ⊗ σ ) = 0 . (4.5)

Now, (4.4)–(4.5) gives us
2n∑
j=1

1 ⊗ αjγj = 0

in MN (C)⊗MN (C). Since, {γ1, . . . , γ2n} is a linearly independent subset of MN (C) we get αj = 0 for all j proving our claim.
Hence, the following map

Φ : Ω1
d (AΘ ) −→ A2n

Θ

a[d, b] ↦−→ (a∂1(b), . . . , a∂2n(b))

is an injective AΘ-bimodule map. Now, for any (0, . . . , a, . . . , 0) ∈ A2n
Θ with a in the jth place, the element aU∗

j δUj ∈

Ω1(AΘ ), δ being the universal differential, descends to aU∗

j [d,Uj] ∈ Ω1
d (AΘ ) and Φ(aU∗

j [d,Uj]) = (0, . . . , a, . . . , 0),
proving surjectivity of Φ . This concludes part (2) for ℓ = 1. For arbitrary 1 ≤ ℓ ≤ 2n, first observe that(

1 ⊗
1
2
γj +

iε′

2
γj ⊗ σ

)2
= 0 ,

{
(1 ⊗

1
2
γj +

iε′

2
γj ⊗ σ ) , (1 ⊗

1
2
γr +

iε′

2
γr ⊗ σ )

}
= 0

for any 1 ≤ j ̸= r ≤ 2n. Hence, for a, b ∈ AΘ ,

[d, a][d, b]

=

2n∑
1≤j<r≤2n

(∂j(a)∂r (b) − ∂r (a)∂j(b)) ⊗

(
1 ⊗

1
2
γj +

iε′

2
γj ⊗ σ

)(
1 ⊗

1
2
γr +

iε′

2
γr ⊗ σ

)
.

Same argument as in the case of ℓ = 1 will now show thatΩ2
d (AΘ ) ∼= A

2n!
2(2n−2)!
Θ . By induction on 1 ≤ ℓ ≤ 2n one concludes

Part (2) and Part (3) simultaneously. □

Lemma 4.3. For the noncommutative 2n-torus AΘ with n > 1, as an AΘ-bimodule, we have

(1) Ω0,0
∂,∂

(AΘ ) ∼= AΘ ,
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(2) Ω1,0
∂,∂

(AΘ ) ∼= An
Θ ,

(3) Ω0,1
∂,∂

(AΘ ) ∼= An
Θ ,

(4) Ω2,0
∂,∂

(AΘ ) ∼= A
n(n−1)

2
Θ ,

(5) Ω0,2
∂,∂

(AΘ ) ∼= A
n(n−1)

2
Θ ,

(6) The product map Ω0,1
∂,∂

(AΘ ) ×Ω
0,1
∂,∂

(AΘ ) −→ Ω
0,2
∂,∂

(AΘ ) is given by

(a1, . . . , an).(b1, . . . , bn) ↦−→ ((apbq − aqbp)1≤p<q≤n) .

Proof. Part (1) is obvious. For part (2), from Theorem 3.14 we get that

[∂, a] =
1
2
[d − id2, a]

=
1
4

( 2n∑
j=1

∂j(a) ⊗ 1 ⊗ γj −

2n∑
ℓ=1, ℓ odd

i∂ℓ(a) ⊗ 1 ⊗ γℓ+1 +

2n∑
ℓ=1, ℓ odd

i∂ℓ+1(a) ⊗ 1 ⊗ γℓ

)

+
iε′

4

( 2n∑
j=1

∂j(a) ⊗ γj ⊗ σ −

2n∑
ℓ=1, ℓ odd

i∂ℓ(a) ⊗ γℓ+1 ⊗ σ +

2n∑
ℓ=1, ℓ odd

i∂ℓ+1(a) ⊗ γℓ ⊗ σ

)

=
1
4

( 2n∑
ℓ=1, ℓ odd

(∂ℓ+1 − i∂ℓ)(a) ⊗ 1 ⊗ γℓ+1 + (∂ℓ + i∂ℓ+1)(a) ⊗ 1 ⊗ γℓ

)
+

iε′

4

( 2n∑
ℓ=1, ℓ odd

(∂ℓ+1 − i∂ℓ)(a) ⊗ γℓ+1 ⊗ σ + (∂ℓ + i∂ℓ+1)(a) ⊗ γℓ ⊗ σ

)
=

2n∑
ℓ=1, ℓ odd

1
4
(∂ℓ+1 − i∂ℓ)(a) ⊗ 1 ⊗ (γℓ+1 + iγℓ) +

iε′

4
(∂ℓ+1 − i∂ℓ)(a) ⊗ (γℓ+1 + iγℓ) ⊗ σ

for all a ∈ AΘ . It can be verified (same way as in Proposition 4.2) that the set {1 ⊗
1
4 (γℓ+1 + iγℓ) +

iε′
4 (γℓ+1 + iγℓ) ⊗ σ :

ℓ ∈ {1, . . . , 2n}, ℓ is odd} is a linearly independent subset of MN (C) ⊗ MN (C). Hence, the following map

Φ : Ω
1,0
∂,∂

(AΘ ) −→ An
Θ

a[∂, b ] ↦−→

2n∑
ℓ=1, ℓ odd

(
0, . . . , a∂ℓ+1(b) − ia∂ℓ(b)  

ℓ+1
2 th place

, . . . , 0
)

is an injective AΘ-bimodule map. For arbitrary ξ = (0, . . . , a, . . . , 0) ∈ An
Θ with a in the (ℓ + 1)/2th place,

Φ(aU∗

ℓ+1[∂,Uℓ+1]) = ξ . This shows that Φ is surjective, concluding Part (2). Part (3) follows similarly since,

[ ∂, a] =
1
2
[d + id2, a]

=
1
4

( 2n∑
j=1

∂j(a) ⊗ 1 ⊗ γj +

2n∑
ℓ=1, ℓ odd

i∂ℓ(a) ⊗ 1 ⊗ γℓ+1 −

2n∑
ℓ=1, ℓ odd

i∂ℓ+1(a) ⊗ 1 ⊗ γℓ

)

+
iε′

4

( 2n∑
j=1

∂j(a) ⊗ γj ⊗ σ +

2n∑
ℓ=1, ℓ odd

i∂ℓ(a) ⊗ γℓ+1 ⊗ σ −

2n∑
ℓ=1, ℓ odd

i∂ℓ+1(a) ⊗ γℓ ⊗ σ

)

=

2n∑
ℓ=1, ℓ odd

1
4
(∂ℓ+1 + i∂ℓ)(a) ⊗ 1 ⊗ (γℓ+1 − iγℓ) +

iε′

4
(∂ℓ+1 + i∂ℓ)(a) ⊗ (γℓ+1 − iγℓ) ⊗ σ

for all a ∈ AΘ .
For Part (5), denote δj := ∂2j + i∂2j−1 and ηj := γ2j − iγ2j−1 for j = 1, . . . , n. Observe that

η2j = 0 , {ηp, ηq} = 0 ∀ p ̸= q .

So by part (3) we see that

[ ∂, a] =

n∑
j=1

1
4
δj(a) ⊗ 1 ⊗ ηj +

iε′

4
δj(a) ⊗ ηj ⊗ σ .
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Hence, for arbitrary a, b ∈ AΘ ,

[ ∂, a][ ∂, b]

=
1
16

∑
ℓ<r

(δr (a)δℓ(b) − δℓ(a)δr (b)) ⊗ (1 ⊗ ηℓηr − ηℓηr ⊗ 1)

+
iε′

16

∑
ℓ̸=r

(δr (a)δℓ(b)) ⊗ (ηℓ ⊗ ηr − ηr ⊗ ηℓ)(1 ⊗ σ )

=

∑
ℓ<r

(δr (a)δℓ(b) − δℓ(a)δr (b)) ⊗

( 1
16

(1 ⊗ ηℓηr − ηℓηr ⊗ 1) +
iε′

16
(ηℓ ⊗ ηrσ − ηr ⊗ ηℓσ )

)
The set

{
1
16 (1⊗ηℓηr −ηℓηr ⊗1)+ iε′

16 (ηℓ⊗ηrσ−ηr ⊗ηℓσ ) : 1 ≤ ℓ < r ≤ n
}
can be easily seen to be a linearly independent

subset of MN (C) ⊗ MN (C). Hence, the following map

Φ : Ω
0,2
∂,∂

(AΘ ) −→ A
n(n−1)

2
Θ

a[ ∂, b ][ ∂, c ] ↦−→

(
(aδr (b)δℓ(c) − aδℓ(b)δr (c))1≤ℓ<r≤n

)
is an injective AΘ-bimodule map. To see surjectivity, observe that for any a ∈ AΘ in (ℓ, r)-position with ℓ < r ,

Φ : aU∗

2ℓU
∗

2r [ ∂,U2r ][ ∂,U2ℓ] ↦−→ a .

This completes Part (5), and Part (4) follows similarly.
For Part (6), starting with (a1, . . . , an), (b1, . . . , bn) ∈ An

Θ first obtain their respective inverse image in Ω0,1
∂,∂

(AΘ ) using
Part (3), then take the product to get an element in Ω0,2

∂,∂
(AΘ ) and finally use the isomorphism in Part (5) to find its image

in A
n(n−1)

2
Θ . We left this for the reader to verify. □

Corollary 4.4. If {e1, . . . , en} denotes the standard free module basis of Ω0,1
∂,∂

(AΘ ) ∼= An
Θ , then {eℓer : 1 ≤ ℓ < r ≤ n} is a

free module basis of Ω0,2
∂,∂

(AΘ ) ∼= A
n(n−1)

2
Θ . Moreover, eℓer + ereℓ = e2ℓ = 0 for all 1 ≤ ℓ < r ≤ n.

Proof. Follows from Part (3), (4) and (5) in the previous Lemma 4.3. □

Theorem 4.5. For the noncommutative 2n-torus AΘ , as an AΘ-bimodule, one has

(1) Ωℓ,0
∂,∂

(AΘ ) ∼= A
n!

ℓ!(n−ℓ)!
Θ ∀ 1 ≤ ℓ ≤ n ,

(2) Ω0,ℓ
∂,∂

(AΘ ) ∼= A
n!

ℓ!(n−ℓ)!
Θ ∀ 1 ≤ ℓ ≤ n ,

(3) Ωℓ,0
∂,∂

(AΘ ) = Ω
0,ℓ
∂,∂

(AΘ ) = {0} ∀ ℓ > n ,
(4) Ω r

d(AΘ ) ∼=
⨁

p+q=r Ω
p,q
∂,∂

(AΘ ) .

Proof. The case of n = 1 should be treated separately. In this case of Aθ ,

[ ∂, a] =
1
4
(∂2 + i∂1)(a) ⊗ 1 ⊗ (γ2 − iγ1) +

iε′

4
(∂2 + i∂1)(a) ⊗ (γ2 − iγ1) ⊗ σ

for all a ∈ Aθ . Since, (γ2 − iγ1)2 = {γ2 − iγ1, σ } = 0, one gets that [ ∂, a][ ∂, b] = 0 for all a, b ∈ Aθ . Part (1, 2, 3) now
follows by induction on ℓ in Lemma 4.3, similarly as in Proposition 4.2. To show Part (4) recall from Propn. 2.33 in [20]
that it is enough to show [T , ω] ∈ Ω1

d (AΘ ) for all ω ∈ Ω1
d (AΘ ), where T =

1
2 (T − iI) is as in Lemma 3.16. Observe that

if ω = a[d, b] then [T , ω] = a[∂, b] ∈ Ω
1,0
∂,∂

(AΘ ). By Proposition 4.2 and Lemma 4.3 we see that

Ω1
d (AΘ ) = Ω

1,0
∂,∂

(AΘ )
⨁

Ω
0,1
∂,∂

(AΘ )

as AΘ-bimodules. Hence, we conclude that [T , ω] ∈ Ω1
d (AΘ ) for all ω ∈ Ω1

d (AΘ ). This concludes Part (4). □

5. Holomorphic vector bundles

5.1. Holomorphic vector bundle

Let (A,H, ∂, ∂, T , T , γ , ⋆) be a Hermitian (or in particular, N = (2, 2) Kähler) spectral data over the unital algebra
A. Recall the space of complex differential forms from Section 2.3.2 and notion of integration from Section 2.3.3 in [20].
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A crucial orthogonality property is mentioned in Propn. 2.35 in [20]. However, for this section it is enough to recall the
following:

Ω
1,0
∂,∂

(A) := span{a[∂, b] : a, b ∈ A} , Ω
2,0
∂,∂

(A) := span{a[∂, b][∂, c] : a, b, c ∈ A} ,

Ω
0,1
∂,∂

(A) := span{a[ ∂, b] : a, b ∈ A} , Ω
0,2
∂,∂

(A) := span{a[ ∂, b][ ∂, c] : a, b, c ∈ A} .

Definition 5.1 ([29]). The algebra of holomorphic elements in A is defined as

O(A) := Ker
{
∂ : A −→ Ω

0,1
∂,∂

(A)
}
.

This is a C-subalgebra of A.

Definition 5.2 ([29]). A holomorphic structure on a f.g.p. left A-module E is a flat ∂-connection, i.e. connection ∇ : E −→

Ω
0,1
∂,∂

(A) ⊗A E such that the associated ∂-curvature Θ ∈ HomA

(
E ,Ω0,2

∂,∂
(A) ⊗A E

)
vanishes. The pair (E,∇) is called a

holomorphic vector bundle over A.

Definition 5.3 ([29]). If (E,∇) is a holomorphic vector bundle over A then

H0(E,∇) := ker
{
∇ : E −→ Ω

0,1
∂,∂

(A) ⊗A E
}

is called the space of holomorphic sections on E .

Remark 5.4.

(1) It follows from the definition of connection that H0(E,∇) is a left O(A)-module.
(2) Recall that in the classical case, a vector bundle on a complex manifold is holomorphic if and only if it admits a flat

∂-connection.

Consider a f.g.p. left module E over A. Then there exists a positive integer m and a left A-module homomorphism
pr : Am

−→ E . By definition, there exists a left A-module F such that E ⊕ F ∼= Am and denote i : E −→ Am to be the
inclusion map determined by this isomorphism. We have pr ◦ i = id on E .

Lemma 5.5. Any ∂-connection ∇̃ on the free module Am induces a ∂-connection ∇ on E .

Proof. Given such ∇̃ , define

∇ : E −→ Ω
0,1
∂,∂

(A) ⊗A E

∇ = (id ⊗ pr) ◦ ∇̃ ◦ i .

Clearly, ∇ is a C-linear map. Now, for all a ∈ A and ξ ∈ E ,

∇(aξ ) = (id ⊗ pr) ◦ ∇̃(ai(ξ ))

= (id ⊗ pr)
(
[ ∂, a] ⊗ i(ξ ) + a∇̃ ◦ i(ξ )

)
= [ ∂, a] ⊗ ξ + a∇(ξ )

proving ∇ is a ∂-connection on E . □

Moreover, the converse is also true.

Proposition 5.6. Any ∂-connection ∇ on E is induced by a ∂-connection ∇̃ on the free module Am .

Proof. Start with a ∂-connection ∇̃ on the free module Am . By previous Lemma 5.5, we get a ∂-connection ∇ on E by
the formula ∇ = (id ⊗ pr) ◦ ∇̃ ◦ i. Now, let ∇

′ be any other ∂-connection on E . Then ∇
′
− ∇ ∈ HomA(E,Ω0,1

∂,∂
(A) ⊗A E).

Since,

id ⊗ pr : Ω
0,1
∂,∂

(A) ⊗A Am
−→ Ω

0,1
∂,∂

(A) ⊗A E

is surjective and E is a projective module, there exists a module map

φ : E −→ Ω
0,1
∂,∂

(A) ⊗A Am
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such that ∇
′
− ∇ = (id ⊗ pr) ◦ φ. Then, φ̃ = φ ◦ pr ∈ HomA(Am , Ω

0,1
∂,∂

(A) ⊗A Am) and hence, ∇̃ + φ̃ is a ∂-connection
on Am . The associated connection on E is

(id ⊗ pr) ◦ (∇̃ + φ̃) ◦ i = ∇ + (id ⊗ pr) ◦ φ

= ∇
′

i,e. ∇ ′ is induced by the ∂-connection ∇̃ + φ̃ on the free module Am. □

Proposition 5.7. Any free module over A is a holomorphic vector bundle.

Proof. Let Am be a free module over A of rank m. Since Ω0,1
∂,∂

(A) ⊗A Am ∼=

(
Ω

0,1
∂,∂

(A)
)m

, define

∇0 : Am
−→ Ω

0,1
∂,∂

(A) ⊗A Am

(a1, . . . , am) ↦−→
(
[ ∂, a1], . . . , [ ∂, am]

)
It is easy to check that ∇0 is a ∂-connection. Let {e1, . . . , em} denote the standard free A-module basis of Am. Then, the
associated curvature becomes

Θ∇0 (a1, . . . , am) = ∇0

(
[ ∂, a1], . . . , [ ∂, am]

)
=

m∑
j=1

∇0([ ∂, aj] ⊗ ej)

=

m∑
j=1

−[ ∂, aj]∇0(ej) + [ ∂, 1][ ∂, aj] ⊗ ej

= 0

since, ∇0(ej) = 0. Hence, ∇0 is flat ∂-connection. This shows that (Am,∇0) is a holomorphic vector bundle over A. □

Corollary 5.8. The space of holomorphic sections of any free module E0 = Am over A is a free O(A)-module of rank m.

Proof. Let E0 = Am be a free module over A of rank m. Then (E0 ,∇0) is a holomorphic vector bundle over A by previous
Proposition 5.7. Now, from Definition 5.3 we get that

H0(E0 ,∇0) = Ker
{
∇0 : Am

−→

(
Ω

0,1
∂,∂

(A)
)m}

= {(a1, . . . , am) : [ ∂, aj] = 0 ∀ j = 1, . . . ,m}

= {(a1, . . . , am) : aj ∈ O(A)∀ j = 1, . . . ,m}

∼= O(A)m

i,e. H0(E0 ,∇0) is a free O(A)-module of rank= rank(E0). □

5.2. Holomorphic vector bundles over noncommutative 2n-tori

Proposition 5.9. The algebra O(AΘ ) of holomorphic elements in AΘ is C.

Proof. From Lemma 4.3,

∂ : AΘ −→ Ω
0,1
∂,∂

(AΘ ) ∼= An
Θ

a ↦−→ ((∂2 + i∂1)(a), . . . , (∂2n + i∂2n−1)(a)) .

Hence, by Definition 5.1,

O(AΘ ) =

{
a ∈ AΘ : (∂j+1 + i∂j)(a) = 0 ∀ j ∈ {1, . . . , 2n} ; j is odd

}
.

Arbitrary a ∈ AΘ is of the form
∑

(ℓ1,...,ℓ2n)∈Z2n αℓ1,...,ℓ2nU
ℓ1
1 . . .Uℓ2n2n where αℓ1,...,ℓ2n ∈ S(Z2n) and hence, for any odd

j ∈ {1, . . . , 2n} we have

(∂j+1 + i∂j)(a) =

∑
(ℓj+1 + iℓj)αℓ1,...,ℓ2nU

ℓ1
1 . . .Uℓ2n2n .

This expression is equal to zero implies that (ℓj+1 + iℓj)αℓ1,...,ℓ2n = 0. Hence, ℓj+1 = ℓj = 0. Thus, a is of the form∑
αℓ1,...,ℓ2nU

ℓ1
1 . . . Û

ℓj
j
ˆ
U
ℓj+1
j+1 . . .U

ℓ2n
2n . This is true for all j ∈ {1, . . . , 2n}, j is odd. Hence, we conclude that a ∈ C1, which

proves O(AΘ ) ∼= C. □



22 S. Guin / Journal of Geometry and Physics 146 (2019) 103492

Corollary 5.10. Space of holomorphic sections of any free module E0 = Am
Θ over AΘ is Cm.

Proof. Follows from Corollary 5.8 and previous Proposition 5.9. □

Lemma 5.11. Ω r
d(AΘ ), Ω

ℓ,0
∂,∂

(AΘ ), Ω
0,ℓ
∂,∂

(AΘ ) all are holomorphic vector bundles over AΘ .

Proof. Follows from Propositions 5.7, 4.2 and Theorem 4.5. □

Theorem 5.12. A necessary and sufficient condition for existence of holomorphic structure on a f.g.p. left module E over AΘ

is that there exists n-tuple (∇1, . . . ,∇n) of C-linear maps ∇j : E −→ E such that the following conditions are satisfied

(1) ∇j(aξ ) = a∇j(ξ ) + δj(a)ξ ∀ a ∈ AΘ ,
(2) [∇ℓ,∇r ] = 0 ∀ 1 ≤ l < r ≤ n.

where, δj = ∂2j + i∂2j−1.

Proof. Recall from Lemma 4.3 thatΩ0,1
∂,∂

(AΘ ) ∼= An
Θ . Hence, any ∂-connection ∇ : E −→ Ω

0,1
∂,∂

(AΘ )⊗E on E is implemented
by n-tuple of C-linear maps (∇1, . . . ,∇n) with each ∇j : E −→ E . Since, ∇ is a ∂-connection, it is easy to verify that

∇j(aξ ) = a∇j(ξ ) + δj(a)ξ ∀ a ∈ AΘ and ξ ∈ E

where, δj = ∂2j + i∂2j−1. If ∇ induces a holomorphic structure on E then Θ∇ = 0. Now, if {e1, . . . , en} denotes the standard
free module basis of Ω0,1

∂,∂
(AΘ ) ∼= An

Θ then observe from Lemma 4.3 that the map ∂
′

: Ω
0,1
∂,∂

(AΘ ) −→ Ω
0,2
∂,∂

(AΘ ), given by

∂
′

: a[ ∂, b] ↦−→ [ ∂, a][ ∂, b], satisfies ∂
′

(ej) = 0. Hence, for any ξ ∈ E , we have

Θ∇ (ξ ) =

n∑
j=1

∇(ej ⊗ ∇j(ξ ))

=

n∑
j=1

−ej∇(∇j(ξ )) + ∂
′

(ej) ⊗ ∇j(ξ )

=

n∑
ℓ,j=1

−ejeℓ ⊗ ∇ℓ(∇j(ξ ))

=

∑
ℓ<j

eℓej ⊗ [∇ℓ,∇j](ξ )

because epeq + eqep = 0 for p ̸= q and e2p = 0 (Corollary 4.4). Since, {eℓej : 1 ≤ ℓ < j ≤ n} is the standard free module
basis of Ω0,2

∂,∂
(AΘ ) we get Θ∇ = 0 if and only if [∇ℓ,∇r ] = 0 for all 1 ≤ ℓ < r ≤ n. This fulfills our claim. □

Observe from Proposition 4.2 and Lemma 4.3 thatΩ1
d (AΘ ) ∼= Ω

1,0
∂,∂

(AΘ )
⨁
Ω

0,1
∂,∂

(AΘ ). This is in fact an orthogonal direct
sum by Propn. 2.35 in [20]. Hence, any C-linear map ∇ : E −→ Ω1

d (AΘ ) ⊗AΘ
E satisfying ∇(aξ ) = a∇(ξ ) + [d, a] ⊗ ξ ,

i.e. a d-connection, can be written as ∇
1,0

+ ∇
0,1. Let π1,0 and π0,1 be the orthogonal projections onto Ω1,0

∂,∂
and Ω0,1

∂,∂
respectively. Note that these are AΘ-module maps.

Proposition 5.13. Let E be a f.g.p. left module over AΘ and ∇ : E −→ Ω1
d (AΘ ) ⊗AΘ

E be a d-connection whose curvature
has vanishing (0, 2)-component. Then, ∇ induces a holomorphic structure on E . In particular, any flat d-connection induces a
holomorphic structure on E .

Proof. Let ∇ be a d-connection and define

∇
′
: E −→ Ω

0,1
∂,∂

(AΘ ) ⊗AΘ
E

ξ ↦−→ (π0,1
⊗ id)∇(ξ ) .

Since π0,1 is a left AΘ-module homomorphism, it is easy to observe that ∇
′ is a ∂-connection. Observe that the associated

curvature satisfies the following relation

Θ∇ ′ = (π0,2
⊗ id)Θ∇ .

Hence, if the (0, 2)-component of the curvature Θ∇ vanishes then ∇
′ is a flat ∂-connection. For detail verification follow

the proof of Propn. 4.7 in [2]. In particular, if Θ∇ itself is zero i.e. ∇ is d-flat then ∇
′ induces a holomorphic structure

on E . □
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If (E,∇) is a holomorphic vector bundle over A then

0 −→ E
∇

−→ Ω
0,1
∂,∂

(A) ⊗A E
∇

−→ Ω
0,2
∂,∂

(A) ⊗A E
∇

−→ . . . . . .

is a cochain complex. The cohomology groups of this complex are denoted by H•(E,∇). Recall from Definition 5.3 that
the zero-th cohomology is the space of holomorphic sections on E . It follows from the definition of connection that each
H•(E,∇) is a left O(A)-module. Hence, for the case of noncommutative torus A = AΘ , they are C-vector spaces (by
Proposition 5.9).

Proposition 5.14. Every short exact sequence

0 −→ (E,∇E )
φ

−→ (F,∇F )
ψ

−→ (G,∇G) −→ 0

of holomorphic vector bundles over AΘ induces a long exact sequence

0 −→ H0(E,∇E )
φ∗

−−→ H0(F,∇F )
ψ∗

−−→ H0(G,∇G)
δ

−→ H1(E,∇E )
φ∗

−−→ . . . . . .

in cohomology of C-vector spaces.

Proof. Since, Ω0,•
∂,∂

(AΘ ) are free modules over AΘ (Theorem 4.5) we get

0 −→ Ω
0,•
∂,∂

(AΘ ) ⊗AΘ
E

id⊗φ
−−−→ Ω

0,•
∂,∂

(AΘ ) ⊗AΘ
F

id⊗ψ
−−−→ Ω

0,•
∂,∂

(AΘ ) ⊗AΘ
G −→ 0

is an exact sequence of cochain complexes which induces a long exact sequence in cohomology (See Propn. 4.6 in [2]). □

5.3. The case of noncommutative two-torus revisited

In this final subsection we revisit the case of noncommutative two-torus Aθ studied earlier in [32] and obtain their
framework as a special case of our results for general C∗-dynamical systems.

Recall from Part (3) in Theorem 4.5 that the noncommutative space of complex two forms

Ω
0,2
∂,∂

(Aθ ) := span{a[ ∂, b][ ∂, c] : a, b, c ∈ Aθ }

vanishes identically for the case of noncommutative two-torus. Because of this reason for any ∂-connection ∇ : E −→

Ω
0,1
∂,∂

(Aθ ) ⊗Aθ
E , the associated ∂-curvature Θ∇ : E −→ Ω

0,2
∂,∂

(Aθ ) ⊗Aθ
E is always zero i.e. ∇ is always ∂-flat. Also, as

observed in Lemma 4.3, we have

Φ : Ω
0,1
∂,∂

(Aθ ) −→ Aθ

a[ ∂, b] ↦−→ a(∂2 + i∂1)(b)

is an Aθ -bimodule isomorphism. Hence, for any f.g.p. left Aθ -module E we get Ω0,1
∂,∂

(Aθ )⊗Aθ
E is canonically isomorphic

with E , since Aθ is unital. Therefore, a holomorphic structure on E is given by a C-linear map ∇ : E −→ E such that

∇(aξ ) = a∇(ξ ) + (∂2 + i∂1)(a)ξ

for all ξ ∈ E and a ∈ Aθ . For arbitrary a ∈ Aθ of the form
∑

(r1,r2)∈Z2 αr1,r2U
r1
1 U r2

2 we see that

(∂2 + i∂1)(a) = (r2 + ir1)a .

If we denote τ to be the purely imaginary number i then the derivation on Aθ defined by

∂τ

⎛⎝ ∑
(r1,r2)∈Z2

αr1,r2U
r1
1 U r2

2

⎞⎠ := 2π i
∑

(r1,r2)∈Z2

(r1τ + r2)αr1,r2U
r1
1 U r2

2

is equal to Φ◦[ ∂, .]. This is the complex structure considered in [32] for Aθ , and we see that the definition of holomorphic
vector bundle given in [32] for the case of noncommutative two-torus Aθ is a special case of the general definition given
in (Definition 5.2).

Moreover, the complex
(
Ω

0,•
∂,∂

(Aθ ) ⊗Aθ
E,∇

)
becomes just

0 −→ E
∇

−→ E −→ 0

and hence, the cohomology becomes

H0(E,∇) = Ker{∇ : E −→ E} and H1(E,∇) = Coker{∇ : E −→ E}.

We see that this is the definition of the cohomology given in [32].
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Open question

Under which condition(s) the N = (2, 2) Kähler spectral data obtained in Theorem 3.14 extends further to a N = (4, 4)
hyper-Kähler spectral data (Defn. 2.37 in [20])? One necessary condition should be dim(G) = 4n but we are not sure
yet whether this is also the sufficient condition. Note that in the classical case, the 4n-dimensional tori are actually
hyper-Kähler manifolds. We expect the same for the noncommutative 4n-dimensional tori also.
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