期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:62
Riemannian manifolds in noncommutative geometry
Article
Lord, Steven2  Rennie, Adam1  Varilly, Joseph C.3 
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[3] Univ Costa Rica, Escuela Matemat, San Jose 2060, Costa Rica
关键词: Noncommutative geometry;    Spectral triple;    Kasparov product;   
DOI  :  10.1016/j.geomphys.2012.03.004
来源: Elsevier
PDF
【 摘 要 】

We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spin(c) manifolds; and conversely, in the presence of a spin(c) structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincare duality. Along the way we clarify the bimodule and first-order conditions for spectral triples. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2012_03_004.pdf 430KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次