期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS | 卷:62 |
Riemannian manifolds in noncommutative geometry | |
Article | |
Lord, Steven2  Rennie, Adam1  Varilly, Joseph C.3  | |
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia | |
[2] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia | |
[3] Univ Costa Rica, Escuela Matemat, San Jose 2060, Costa Rica | |
关键词: Noncommutative geometry; Spectral triple; Kasparov product; | |
DOI : 10.1016/j.geomphys.2012.03.004 | |
来源: Elsevier | |
【 摘 要 】
We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spin(c) manifolds; and conversely, in the presence of a spin(c) structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincare duality. Along the way we clarify the bimodule and first-order conditions for spectral triples. (C) 2012 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_geomphys_2012_03_004.pdf | 430KB | download |