期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:61
The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations
Article
Escher, J.1  Kohlmann, M.1  Lenells, J.2 
[1] Leibniz Univ Hannover, Inst Appl Math, D-30167 Hannover, Germany
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词: Camassa-Holm equation;    Degasperis-Procesi equation;    Semidirect product;    Geodesic flow;    Sectional curvature;   
DOI  :  10.1016/j.geomphys.2010.10.011
来源: Elsevier
PDF
【 摘 要 】

We use geometric methods to study two natural two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations. We show that these generalizations can be regarded as geodesic equations on the semidirect product of the diffeomorphism group of the circle Diff(S-1) with some space of sufficiently smooth functions on the circle. Our goals are to understand the geometric properties of these two-component systems and to prove local well-posedness in various function spaces. Furthermore, we perform some explicit curvature calculations for the two-component Camassa-Holm equation, giving explicit examples of large subspaces of positive curvature. (C) 2010 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2010_10_011.pdf 309KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次