期刊论文详细信息
AIMS Mathematics
Computational analysis of fractional modified Degasperis-Procesi equation with Caputo-Katugampola derivative
article
Jagdev Singh1  Arpita Gupta1 
[1] Department of Mathematics, JECRC University
关键词: Caputo-Katugampola fractional derivative;    generalized Laplace transform;    Degasperis-Procesi equation;   
DOI  :  10.3934/math.2023009
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

Main aim of the current study is to examine the outcomes of nonlinear partial modified Degasperis-Procesi equation of arbitrary order by using two analytical methods. Both methods are based on homotopy and a novel adjustment with generalized Laplace transform operator. Nonlinear terms are handled by using He's polynomials. The fractional order modified Degasperis-Procesi (FMDP) equation, is capable to describe the nonlinear aspects of dispersive waves. The Katugampola derivative of fractional order in the caputo type is employed to model this problem. The numerical results and graphical representation demonstrate the efficiency and accuracy of applied techniques.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002376ZK.pdf 874KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次