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1. Introduction

The nonlinear partial Degasperis-Procesi equation is a very important differential equation, that
arises in the modeling of dispersive water wave propagation. In mathematical physics, the modified
Degasperis-Procesi differential equation is written as

vt − vxxt + 4v2vx = 3vxvxx + vvxxx. (1.1)

The Degasperis-Procesi [1] equation was discovered by, ‘Antonio Degasperis’ and ‘Michela
Procesi’, while researching asymptotically integrable partial differential equations. In addition, this
third order nonlinear modified dispersive Degasperis-Procesi equation, is also considered for the
modeling of shallow water dynamics. Because of these properties, this equation is centre of attraction
for many researchers.
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Due to its local nature, model (1.1) can not describe the entire memory effect of the system. Thus,
in order to involve whole memory of the system, we modify the model (1.1) by changing ordinary time
derivative to the Katugampola fractional derivative in the Caputo sense.

In this research work, we are considering the nonlinear time fractional modified
Degasperis-Procesi (FMDP) equation that models the unidirectional propagation of two-dimensional
shallow water waves over a flat plate. Hence, FMDP equation associated with the
Caputo-Katugampola fractional derivative is given as

KC
a Dα,ρ

t v(x, t) − vxxt + 4v2vx = 3vxvxx + vvxxx, (1.2)

with initial condition
v0(x, t) = v(x, 0) = ℘(x) = −

15
8

sech2
( x
2

)
. (1.3)

In last few decades, many researchers and mathematicians have taken a great interest in the study
of fractional calculus and its application areas, like physical sciences, chemistry, engineering, life
sciences, etc. The main reason behind their interest in fractional calculus is that, these fractional order
models give more accurate results in comparison to the integer order models. Many definitions of
fractional calculus, fractional order derivatives (integrals) and their various properties are
available [2–6]. Usually, it is tough to obtain the exact solutions of fractional order differential
equations. So, several numerical and analytical methods are available to obtain the approximate
solution of a differential equation of fractional order. Many analytical and numerical methods are
given to obtain the more efiicient and approximate results of FMDP equation. Some of them are:
homotopy perturbation technique applied by Zhang et al. [7] to get the solitary wave solution of
modified Degasperis-Procesi and Camassa-Holm equations, variational homotopy perturbation
method (VHPM) given by Yousif et al. [8] is a coupling of variational iteration method and the
homotopy perturbation approach. Gupta et al. [9] obtained the approximate analytical solution of
modified fractional Degasperis-Procesi equation by using the homotopy perturbation technique.
Abourabia et al. [10] gave the analytical solutions of Camassa-Holm and Degasperis-Procesi
equations by employing three different methods, which are the Cole-Hopf method, the Schwarzian
derivatives method and the factorization method, the q-homotopy analysis sumudu transform
method (q-HASTM) applied by Dubey et al. [11] to examine the results of fractional modified
Degasperis-Procesi equation. Singh et al. [12] employed homotopy analysis transform
method (HATM) to determine the solution of fractional fish farm model. An efficient computational
approach, namely q-homotopy analysis transform method (q-HATM), implemented by Singh et
al. [13] to analyze the local fractional Poisson equation. The homotopy perturbation sumudu
transform method (HPSTM) is used by Goswami et al. [14] to obtain the solution of time-fractional
Kersten-Krasil’shchik coupled KdV-mKdV nonlinear system.

In this research work, we are studying the FMDP equation by employing two techniques. One is
q-homotopy analysis generalized transform method (q-HAGTM), which is a graceful coupling of q-
homotopy analysis method [15], generalized Laplace transform (LT) [16] and homotopy polynomials,
and the another is homotopy perturbation generalized transform method (HPGTM). The HPGTM is a
mixture of the homotopy perturbation method [17], generalized LT and He’s polynomials [18]. Reason
behind the application of these techniques is the potential of combining two powerful computational
methods for analysing nonlinear fractional order equations.
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The current article is organized as follows: Section 2 contains some preliminary definitions. In
section 3, the elementary procedure of both analytic methods (q-HAGTM and HPGTM) is mentioned.
In section 4, FMDP equation is analyzed by using q-HAGTM and HPGTM. Section 5 is devoted to
numerical results. Lastly, section 6 presents the conclusion of this research work.

2. Some preliminary definitions

Here, we present some definitions and results related to fractional operators and generalized
LT [4,16,19–24].
Definition 2.1. The Caputo derivative [4] of non-integer order α of function g(t) is given as follows(

C
a Dα

t g
)

(t) =
1

Γ(1 − α)

∫ t

a
(t − w)−αg′(w)dw, where 0 < α ≤ 1. (2.1)

Definition 2.2. The Caputo-Hadamard derivative [20] of fractional order α of function g(t) is defined
as follows (

CH
a Dα

t g
)

(t) =
1

Γ(1 − α)

∫ t

a

(
log

t
w

)−α
δg(w)dw, (2.2)

where δ represents differential operator and is defined as δ = t
d
dt

.
Definition 2.3. The Katugampola derivative of fractional order α of function g(t) in Caputo type [22]
is given as (

KC
a Dα,ρ

t g
)

(t) =
1

Γ(1 − α)

∫ t

a

(
tρ − wρ

ρ

)−α
γg(w)

du
w1−ρ , (2.3)

where γ represents differential operator and is given as γ = t1−ρ d
dt

.
As, we can observe that if ρ = 1, then the Katugampola fractional derivative given by Eq (2.3)

reduces to the Caputo derivative of fractional order α and if ρ approaches to 0, then the fractional
derivative given by Eq (2.3) reduces to the Caputo-Hadamard derivative of fractional order α.
Definition 2.4. Let g, h : [a,∞)→ R be two real-valued functions in such a way that h(t) is continuous
and h′(t) > 0 on [a,∞), then generalized LT [16] of function g(t) is defined as

Lh{g(t)}(s) =

∫ ∞

a
e−s(h(t)−h(a))g(t)h′(t)dt, (2.4)

here, s is used as generalized LT parameter.
On putting h(t) = t and a = 0 in Eq (2.4), the generalized LT reduces to the classical LT and if we

put h(t) = tρ
ρ

and a = 0 then the generalized LT becomes the ρ-LT and is defined as

L tρ
ρ
{g(t)}(s) =

∫ ∞

0
e−s tρ

ρ g(t)
dt

t1−ρ . (2.5)

In this paper, we are using generalized LT given by Eq (2.5).
Definition 2.5. Generalized LT of Katugampola derivative of fractional order in Caputo type [22] is
given as follows

L tρ
ρ

{(
KC
a Dα,ρ

t g
)

(t)
}

(s) = sαL tρ
ρ
{g(t)}(s) − sα−1g(0). (2.6)
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3. Elementary description of analytical methods

3.1. q-Homotopy analysis generalized transform method (q-HAGTM)

To illustrate basic working plan of the first implemented analytical scheme, consider a
non-homogeneous nonlinear fractional differential equation

KC
a Dα,ρ

t v(x, t) + Rv(x, t) + Nv(x, t) = φ(x, t), m − 1 < α ≤ m, m ∈ N, (3.1)

with initial condition v(x, 0) = ℘(x) for any x ∈ R, here, v(x, t) is a function of x and t, KC
a Dα,ρ

t is the
Katugampola fractional derivative of order α, R is bounded linear operator of x and t. The general
nonlinear operator is presented by N, which is Lipschitz continuous and φ(x, t) is a source term.

Using generalized LT on Eq (3.1), we get

L tρ
ρ

[
KC
a Dα,ρ

t v(x, t)
]

+ L tρ
ρ

[Rv(x, t) + Nv(x, t)] = L tρ
ρ
[φ(x, t)]. (3.2)

Now, on utilizing the generalized LT of Katugampola derivative of fractional order in Caputo type, we
get

sαL tρ
ρ
[v(x, t)](s) − sα−1v(x, 0) +L tρ

ρ
[Rv(x, t) + Nv(x, t)] − L tρ

ρ
[φ(x, t)] = 0. (3.3)

On simplifying the Eq (3.3), we get

L tρ
ρ
[v(x, t)](s) − s−1v(x, 0) + s−α

[
L tρ

ρ
[Rv(x, t) + N(x, t)]

]
− s−αL tρ

ρ
[φ(x, t)] = 0. (3.4)

The nonlinear operator can be written in the following manner

N[ψ(x, t; q)] = L tρ
ρ
[ψ(x, t; q)]− s−1ψ(x, 0; q)+ s−α

[
L tρ

ρ
[Rψ(x, t; q) + Nψ(x, t; q)] − L tρ

ρ
[φ(x, t)]

]
. (3.5)

In Eq (3.5) ψ(x, t; q) represents a function of x, t and q, also q is an embedding parameter s.t. q ∈
[
0, 1

n

]
,

where n ≥ 1. Now the homotopy can be developed in this way

(1 − nq)L tρ
ρ
[ψ(x, t; q) − v0(x, t)] = ~qN[ψ(x, t; q)], (3.6)

where,L tρ
ρ

represents the generalized LT operator, v0(x, t) is an initial approximation of v(x, t), ψ(x, t; q)
is an unknown function and ~ is a nonzero auxiliary parameter. Moreover, it may be clarified that, by
substituting the values of embedding parameter q = 0 as well as q = 1

n , it gives

ψ(x, t; 0) = v0(x, t), ψ

(
x, t;

1
n

)
= v(x, t), (3.7)

respectively. Thus, we can note that as the value of q varies from 0 to 1
n , the solution of ψ(x, t; q)

changes from initial approximation v0(x, t) to the solution v(x, t). The Taylor’s series extension of
function ψ(x, t; q) is given as follows

ψ(x, t; q) = v0(x, t) +

∞∑
k=1

vk(x, t)qk, (3.8)
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where,

vk(x, t) =
1
k!

∂k

∂qk {ψ(x, t; q)} |q=0. (3.9)

If the initial guess v0(x, t), the convergence control parameter ~ and asymptotic parameter n are
described appropriately, then Eq (3.8) converges at q = 1

n . Then we get the following equation

v(x, t) = v0(x, t) +

∞∑
k=1

vk(x, t)
(
1
n

)k

. (3.10)

Result given by Eq (3.10) must be one of the solutions of studied nonlinear fractional differential
equation. With the aid of Eqs (3.10) and (3.6), the governing equation can be obtained as

~vk = {v1(x, t), v2(x, t), v3(x, t), ..., vk(x, t)}. (3.11)

On differentiating Eq (3.6) k-times w.r.t. q and then dividing by k!, after that putting q = 0, it gives the
subsequent equation

L tρ
ρ
[vk(x, t) − χkvk−1(x, t)] = ~Rk(~vk−1). (3.12)

Employing the inverse generalized LT operator on Eq (3.12), we attain the subsequent result

vk(x, t) = χkvk−1(x, t) + ~L−1
tρ
ρ

[
Rk(~vk−1)

]
, (3.13)

where χk is defined as

χk =

0, k ≤ 1,
n, k > 1,

(3.14)

and we express the value of Rk(~vk−1) in an enhanced manner as

Rk(~vk−1) = L tρ
ρ
[vk−1(x, t)] −

(
1 −

χk

n

) [
s−1v(x, 0) + s−αL tρ

ρ
[φ(x, t)]

]
+ s−αL tρ

ρ
[Rvk−1 + Ak−1]. (3.15)

In Eq (3.15), Ak represents the homotopy polynomial [25] and is given as

Ak =
1

Γ(k)

[
∂k

∂qk Nψ(x, t; q)
]

q=0
, (3.16)

and
ψ(x, t; q) = ψ0 + qψ1 + q2ψ2 + ... (3.17)

Using Eq (3.15) in Eq (3.13), we get

vk(x, t) = (χk +~)vk−1(x, t)−~
(
1 −

χk

n

)
L−1

tρ
ρ

[
s−1v(x, 0) + s−αL tρ

ρ
[φ(x, t)]

]
+~L−1

tρ
ρ

[
s−αL tρ

ρ
[Rvk−1 + Ak−1]

]
.

(3.18)
Hence, by using Eq (3.18), the various components of vk(x, t) for k ≥ 1 can be determined and we
obtain q-HAGTM solution given by the subsequent equation as

v(x, t) =

∞∑
k=0

vk(x, t)
(
1
n

)k

. (3.19)
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3.2. Homotopy perturbation generalized transform method (HPGTM)

To demonstrate fundamental working plan of the next implemented analytical scheme, take a non-
homogeneous nonlinear fractional differential equation

KC
a Dα,ρ

t v(x, t) + Rv(x, t) + Nv(x, t) = φ(x, t), m − 1 < α ≤ m, m ∈ N, (3.20)

with initial condition v(x, 0) = ℘(x) for any x ∈ R, here, v(x, t) is a function of x and t, KC
a Dα,ρ

t is the
Katugampola fractional derivative of order α, R is bounded linear operator of x and t. The general
nonlinear operator is presented by N, which is Lipschitz continuous and φ(x, t) is a source term.

Employing generalized LT on Eq (3.20) ,we get

L tρ
ρ

[
KC
a Dα,ρ

t v(x, t)
]

+ L tρ
ρ
[Rv(x, t) + Nv(x, t)] = L tρ

ρ
[φ(x, t)]. (3.21)

Now, on utilizing the generalized LT of Katugampola derivative of fractional order in Caputo type, we
get

sαL tρ
ρ
[v(x, t)](s) − sα−1v(x, 0) +L tρ

ρ
[Rv(x, t) + Nv(x, t)] − L tρ

ρ
[φ(x, t)] = 0. (3.22)

On simplifying the Eq (3.22), we get

L tρ
ρ
[v(x, t)](s) =

℘(x)
s

+
1
sα
L tρ

ρ
[φ(x, t)] −

1
sα

[
L tρ

ρ
[Rv(x, t) + Nv(x, t)]

]
. (3.23)

Now, operating the inverse generalized LT on Eq (3.23), we obtain the following equation

v(x, t) = F(x, t) − L−1
tρ
ρ

[
1
sα

{
L tρ

ρ
[Rv(x, t) + Nv(x, t)]

}]
, (3.24)

where, F(x, t) stands for the term arising from the prescribed initial condition and the source term.
Next, we implement the HPM

v(x, t) =

∞∑
k=0

pkvk(x, t). (3.25)

The nonlinear terms can be decomposed as

Nv(x, t) =

∞∑
k=0

pkHk(v), (3.26)

using the He’s polynomials Hk(v) that are given as

Hk(v0, v1, , ..., vk) =
1
k!

∂k

∂pk

N
 k∑

j=0

p jv j




p=0

, k = 0, 1, 2, 3, ... (3.27)

On using Eqs (3.25) and (3.26) in Eq (3.24), we get

∞∑
k=0

pkvk(x, t) = F(x, t) − p

L−1
tρ
ρ

 1
sα
L tρ

ρ

R ∞∑
k=0

pkvk(x, t) +

∞∑
k=0

pkHk(v)



 , (3.28)
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that is a combination of generalized LT and HPM utilizing He’s polynomials. Next, on equating the
coefficients of like powers of p, we obtain the subsequent approximations

p0 : v0(x, t) = F(x, t), (3.29)

p1 : v1(x, t) = L−1
tρ
ρ

[
1
sα
L tρ

ρ
[Rv0(x, t) + H0(v)]

]
, (3.30)

p2 : v2(x, t) = L−1
tρ
ρ

[
1
sα
L tρ

ρ
[Rv1(x, t) + H1(v)]

]
, (3.31)

p3 : v3(x, t) = L−1
tρ
ρ

[
1
sα
L tρ

ρ
[Rv2(x, t) + H2(v)]

]
. (3.32)

Hence, we can find remaining components vk(x, t) completely by proceeding in the same way, and
we get the series solution. Finally, the approximate solution of the problem using this technique is
presented as

v(x, t) = lim
K→∞

K∑
k=0

vk(x, t). (3.33)

4. Analysis of uniqueness and convergence of the solution

In this part, we check the uniqueness and convergence of the obtained solution.
Theorem 4.1. (Uniqueness Theorem). The solution of FMDP Eq (1.2) is unique, while 0 < λ < 1,
where, λ = (n + ~) + ~[δ′3 + 4((A + B)δ1A + B2δ1) + 3(δ2Aδ1 + δ1Bδ2) + (δ3A + Bδ3)]T .
Proof. Here, the solution of FMDP Eq (1.2) is given as

v(x, t) =

∞∑
k=0

vk(x, t)
(
1
n

)k

, (4.1)

where,

vk(x, t) = (χk +~)vk−1(x, t)−~
(
1 −

χk

n

)
v0(x, t)−~L−1

tρ
ρ

[
1
sα
L tρ

ρ

(
v(k−1)xxt − 4Ak−1 + 3Bk−1 + Ck−1

)]
. (4.2)

Let, v and v∗ be two different solutions of FMDP Eq (1.2) s.t. |v| ≤ A, |v∗| ≤ B, then using the Eq (4.2),
we have

|v − v∗| =

∣∣∣∣∣∣(n + ~)(v − v∗) − ~L−1
tρ
ρ

[
1
sα
L tρ

ρ
{(vxxt − v∗xxt) − 4(v2vx − v∗2v∗x) + 3(vxvxx − v∗xv

∗
xx)+

(vvxxx − v∗v∗xxx)}
]∣∣∣ . (4.3)

Now, on applying convolution theorem [22] for generalized LT, we obtain

|v − v∗| ≤ (n + ~)|v − v∗| + ~
∫ t

0

(
|vxxt − v∗xxt| + 4|v2vx − v∗2v∗x| + 3|vxvxx − v∗xv

∗
xx|
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+|vvxxx − v∗v∗xxx|
) 1

Γ(α)

[
(tρ − wρ)

ρ

]α−1

wρ−1dw.

|v − v∗| ≤ (n + ~)|v − v∗| + ~
∫ t

0

(∣∣∣∣∣∣ ∂3

∂x2∂t
(v − v∗)

∣∣∣∣∣∣ + 4
∣∣∣∣∣∂v
∂x

(v − v∗)(v + v∗) + v∗2
∂

∂x
(v − v∗)

∣∣∣∣∣
+3

∣∣∣∣∣∣ ∂∂x
(v − v∗)

∂2v
∂x2 +

∂v∗

∂x
∂2

∂x2 (v − v∗)

∣∣∣∣∣∣ +

∣∣∣∣∣∣(v − v∗)
∂3v
∂x3 + v∗

∂3

∂x3 (v − v∗)

∣∣∣∣∣∣
)

1
Γ(α)

[
(tρ − wρ)

ρ

]α−1

wρ−1dw.

|v − v∗| ≤ (n + ~)|v − v∗| + ~
∫ t

0

(
δ′3|(v − v∗)| + 4((A + B)δ1A + B2δ1)|(v − v∗)|

+ 3(δ2Aδ1 + δ1Bδ2)|(v − v∗)| + (δ3A + Bδ3)|(v − v∗)|)
1

Γ(α)

[
(tρ − wρ)

ρ

]α−1

wρ−1dw. (4.4)

Now, on implementing mean value theorem [26, 27], we get

|v− v∗| ≤ (n + ~)|v− v∗|+ ~
(
δ′3|(v − v∗)| + 4((A + B)δ1A + B2δ1)|(v − v∗)| + 3(δ2Aδ1 + δ1Bδ2)|(v − v∗)|

+(δ3A + Bδ3)|(v − v∗)|) T. (4.5)

On simplifying Eq (4.5), we obtain the subsequent relation as

|v − v∗| ≤ λ|v − v∗|, (4.6)

where, λ = (n + ~) + ~[δ′3 + 4((A + B)δ1A + B2δ1) + 3(δ2Aδ1 + δ1Bδ2) + (δ3A + Bδ3)]T .
It yields (1 − λ)|v − v∗| and here 0 < λ < 1, hence |v − v∗| = 0 which confers that v = v∗.
Therefore, we can say that the obtained solution is unique.

Theorem 4.2. (Convergence Theorem). Let F : B → B be a nonlinear mapping, where B is a Banach
space, also assume that

‖F(v) − F(u)‖ ≤ |v − u|, ∀ v, u ∈ B. (4.7)

Then by the fixed point theory [26, 27] of Banach space, we know that F has a fixed point. Also,
the sequence formed by using q-HAGTM solution having an arbitrary solution of v0, u0 ∈ B, converges
to the fixed point of F and

‖vk − v j‖ ≤
λ j

1 − λ
‖v1 − v0‖, ∀ v, u ∈ B. (4.8)

Proof. Let (C[I], ‖.‖) be the Banach space of all continuous functions on I associated with the norm,
given as ‖ f (t)‖ = maxt∈I | f (t)|.

Now, to prove the convergence of this solution, we will show that {v j} is a Cauchy sequence in the
Banach space.

‖vk − v j‖ = max
t∈I
|(vk − v j)|,
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‖vk − v j‖ = max
t∈I

∣∣∣∣∣∣(n + ~)
(
v(k−1) − v( j−1)

)
− ~L−1

tρ
ρ

[
1
sα
L tρ

ρ

{(
v(k−1)xxt − v( j−1)xxt

)
− 4

(
v2

(k−1)v(k−1)x − v2
( j−1)v( j−1)x

)
+ 3

(
v(k−1)xv(k−1)xx − v( j−1)xv( j−1)xx

)
+

(
v(k−1)v(k−1)xxx − v( j−1)v( j−1)xxx

)}]∣∣∣∣ .

‖vk − v j‖ ≤ max
t∈I

[
(n + ~)|v(k−1) − v( j−1)| + ~L

−1
tρ
ρ

{
1
sα
L tρ

ρ

(∣∣∣v(k−1)xxt − v( j−1)xxt

∣∣∣
+ 4

∣∣∣v2
(k−1)v(k−1)x − v2

( j−1)v( j−1)x

∣∣∣ + 3
∣∣∣v(k−1)xv(k−1)xx − v( j−1)xv( j−1)xx

∣∣∣ +
∣∣∣v(k−1)v(k−1)xxx − v( j−1)v( j−1)xxx

∣∣∣)}] .
Now, employing convolution theorem for generalized LT, we obtain

‖vk − v j‖ ≤ max
t∈I

[
(n + ~)

∣∣∣v(k−1) − v( j−1)

∣∣∣ + ~

∫ t

0

(∣∣∣v(k−1)xxt − v( j−1)xxt

∣∣∣ + 4
∣∣∣v2

(k−1)v(k−1)x − v2
( j−1)v( j−1)x

∣∣∣
+ 3

∣∣∣v(k−1)xv(k−1)xx − v( j−1)xv( j−1)xx

∣∣∣ +
∣∣∣v(k−1)v(k−1)xxx − v( j−1)v( j−1)xxx

∣∣∣) 1
Γ(α)

[
(tρ − wρ)

ρ

]α−1

wρ−1dw
 .

‖vk−v j‖ ≤ max
t∈I

[
(n + ~)

∣∣∣v(k−1) − v( j−1)

∣∣∣ + ~

∫ t

0

(
δ′3

∣∣∣v(k−1) − v( j−1)

∣∣∣ + 4((A + B)δ1A + B2δ1)
∣∣∣v(k−1) − v( j−1)

∣∣∣
+3(δ2Aδ1 + δ1Bδ2)

∣∣∣v(k−1) − v( j−1)

∣∣∣ + (δ3A + Bδ3)
∣∣∣v(k−1) − v( j−1)

∣∣∣) 1
Γ(α)

[
(tρ − wρ)

ρ

]α−1

wρ−1dw
 .

Now, applying mean value theorem, we obtain

‖vk − v j‖ ≤ max
t∈I

[
(n + ~)

∣∣∣v(k−1) − v( j−1)

∣∣∣ + ~
(
δ′3

∣∣∣v(k−1) − v( j−1)

∣∣∣ + 4
(
(A + B)δ1A + B2δ1

) ∣∣∣v(k−1) − v( j−1)

∣∣∣
+3(δ2Aδ1 + δ1Bδ2)

∣∣∣v(k−1) − v( j−1)

∣∣∣ + (δ3A + Bδ3)
∣∣∣v(k−1) − v( j−1)

∣∣∣) T
]
,

then we have
‖vk − v j‖ ≤ λ‖vk−1 − v j−1‖.

Setting k = j + 1, it gives

‖v j+1 − v j‖ ≤ λ‖v j − v j−1‖ ≤ λ
2‖v j−1 − v j−2‖ ≤ ... ≤ λ

j‖v1 − v0‖.

Using triangular inequality, we have

‖vk − v j‖ ≤ ‖v j+1 − v j‖ + ‖v j+2 − v j+1‖ + ... + ‖vk − vk−1‖

≤ [λ j + λ j+1 + ... + λk−1]‖v1 − v0‖

≤ λ j[1 + λ + λ2 + ... + λk− j−1]‖v1 − v0‖

≤ λ j

(
1 − λk− j−1

1 − λ

)
‖v1 − v0‖.
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As 0 < λ < 1, so 1 − λk− j−1 < 1, then we have

‖vk − v j‖ ≤
λ j

1 − λ
‖v1 − v0‖.

Since ‖v1 − v0‖ < ∞, so as k → ∞ then ‖vk − v j‖ → 0.
Hence, the sequence {v j} is convergent as it is a Cauchy sequence in C[I].

5. Solution of fractional Degasperis-Procesi equation

5.1. Solution by applying q-HAGTM

The FMDP equation associated with Katugampola fractional derivative is given as
KC
a Dα,ρ

t v(x, t) − vxxt + 4v2vx = 3vxvxx + vvxxx, (5.1)

with initial condition
v0(x, t) = v(x, 0) = ℘(x) = −

15
8

sech2
( x
2

)
. (5.2)

The exact solution [11] of standard modified Degasperis-Procesi equation obtained by substituting
α = 1 in Eq (5.1) is given as

v(x, t) = −
15
8

sech2
(

x
2
−

5t
4

)
. (5.3)

Now, by employing generalized LT on Eq (5.1) and using initial approximation given by Eq (5.2), we
obtain

L tρ
ρ
[v(x, t)] − s−1℘(x) − s−αL tρ

ρ
[vxxt] + 4s−αL tρ

ρ
[v2vx] − 3s−αL tρ

ρ
[vxvxx] − s−αL tρ

ρ
[vvxxx] = 0. (5.4)

Now, the nonlinear operator is given as follows

N
[
ψ(x, t; q)

]
= L tρ

ρ

[
ψ(x, t; q)

]
−

1
s
℘(x) − s−αL tρ

ρ

[
ψxxt(x, t; q)

]
+ 4s−αL tρ

ρ

[
ψ2(x, t; q)ψx(x, t; q)

]
− 3s−αL tρ

ρ

[
ψx(x, t; q)ψxx(x, t; q)

]
− s−αL tρ

ρ

[
ψ(x, t; q)ψxxx(x, t; q)

]
, (5.5)

and the value of Rk(~vk−1) is given as

Rk
(
~vk−1(x, t)

)
= L tρ

ρ
[vk−1(x, t)]−

(
1 −

χk

n

) [1
s
℘(x)

]
−s−αL tρ

ρ

[
v(k−1)xxt − 4A(k−1) + 3B(k−1) + C(k−1)

]
. (5.6)

Now, making use of the initial approximation ℘(x) = −15
8 sech2

(
x
2

)
and iterative formula given by

Eq (3.13), we attain the subsequent iterative terms of the approximate solution

v1(x, t) = ~
[
4℘2(x)℘′(x) − 3℘′(x)℘′′(x) − ℘(x)℘′′′(x)

] 1
Γ(α + 1)

(
tρ

ρ

)α
. (5.7)

Hence, performing in the similar way, we can find rest of the components vk, k ≥ 2, and
approximate solution using qHAGTM is obtained.

Consequently, q-HAGTM solution is given as

v(x, t) = lim
K→∞

K∑
k=0

vk(x, t)
(
1
n

)k

. (5.8)
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5.2. Solution by applying HPGTM

In this part, we are finding the approximate solution of FMDP Eq (5.1) with an initial guess given
by Eq (5.2) using HPGTM.

Employing generalized LT on both sides of Eq (5.1) and utilizing initial guess (5.2), we get

L tρ
ρ
[v(x, t)] =

1
s
℘(x) +

1
sα
L tρ

ρ
[vxxt − 4v2vx + 3vxvxx + vvxxx]. (5.9)

Now, operating the inverse generalized LT on Eq (5.9), we obtain

v(x, t) = ℘(x) +L−1
tρ
ρ

[
1
sα
L tρ

ρ
[vxxt − 4v2vx + 3vxvxx + vvxxx]

]
. (5.10)

Employing HPM, we get subsequent equation

∞∑
k=0

pkvk(x, t) = ℘(x) + p

L−1
tρ
ρ

 1
sα
L tρ

ρ

 ∞∑
k=0

pk(vk)xxt − 4
∞∑

k=0

pkAk(v) + 3
∞∑

k=0

pkBk(v) +

∞∑
k=0

pkCk(v)



 ,

(5.11)
where Ak(v), Bk(v) and Ck(v) are He’s polynomials, which represent the nonlinear terms.

On equating the coefficients of like powers of p, we get

p0 : v0(x, t) = ℘(x), (5.12)

p1 : v1(x, t) = L−1
tρ
ρ

[
1
sα
L tρ

ρ
{(v0)xxt − 4A0(v) + 3B0(v) + C0(v)}

]
= −

[
4℘2(x)℘′(x) − 3℘′(x)℘′′(x) − ℘(x)℘′′′(x)

] 1
Γ(α + 1)

(
tρ

ρ

)α
.

Hence, performing in the similar way, we can find rest of the components vk, k ≥ 2 and approximate
solution using HPGTM is obtained.

Consequently, HPGTM solution is given as

v(x, t) = lim
K→∞

K∑
k=0

vk(x, t). (5.13)

6. Numerical results

In this part, we analyze the solutions of FMDP equation obtained by q-HAGTM and HPGTM. The
numerical simulation of the discussed problem is performed for numerous values of the time variable
t, space variable x and fractional order α. The given table shows the comparative study of solutions
attained by implemented techniques versus exact solution. Table 1 shows that approximate solutions
obtained by implemented techniques are quite close to their exact solution. The outcomes of this
numerical simulation are presented in the form of Figures 1–14. Figures 1–4 represent the behaviour
of solution v(x, t) obtained by q-HAGTM and Figures 5–8 represent the behaviour of solution v(x, t)
obtained by HPGTM with respect to x, t and for distinct values of α. Figure 9 is plotted for the

AIMS Mathematics Volume 8, Issue 1, 194–212.



205

exact solution of the classical modified Degasperis-Procesi equation. Figure 10 (for q-HAGTM) and
Figure 11 (for HPGTM) represent the response of v(x, t) w.r.t. time variable for various values of α.
Figure 12 (for q-HAGTM) and Figure 13 (for HPGTM) depict the aspect of v(x, t) w.r.t. space variable.
Figure 14 expresses the n-curves for q-HAGTM solution at various values of α.

Table 1. Comparative study of exact solution and obtained solutions for v(x, t) when α =

1, ~ = −1 and n = 1.

(x, t)
Exact Solution Approximate Approximate Absolute Error

(q-HAGTM) (HPGTM)
(8,0.05) -0.002848800949 -0.002515546006 -0.002515546006 0.000333254943
(9,0.05) -0.001048518941 -0.0009255163340 -0.0009255163340 0.0001230026070
(10,0.05) -0.0003857967557 -0.0003404917396 -.0003404917396 0.0000453050161
(8,0.1) -0.003227787763 -0.002516809482 -0.002516809482 0.000710978281
(9,0.1) -0.001188083378 -0.0009256875444 -0.0009256875444 0.0002623958336
(10,0.1) -0.0004371590085 -0.0003405149212 -0.0003405149212 0.0000966440873
(8,0.2) -0.004143548046 -0.002519336432 -0.002519336432 0.001624211614
(9,0.2) -0.001525391967 -0.0009260299653 -0.0009260299653 0.0005993620017
(10,0.2) -0.0005613046914 -0.0003405612846 -0.0003405612846 0.0002207434068

Figure 1. The surface of v(x, t) for q-HAGTM solution w.r.t. x and t for α = 1.
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Figure 2. The surface of v(x, t) for q-HAGTM solution w.r.t. x and t for α = 0.75.

Figure 3. The surface of v(x, t) for q-HAGTM solution w.r.t. x and t for α = 0.50.

Figure 4. The surface of v(x, t) for q-HAGTM solution w.r.t. x and t for α = 0.25.

AIMS Mathematics Volume 8, Issue 1, 194–212.



207

Figure 5. The surface of v(x, t) for HPGTM solution w.r.t. x and t for α = 1.

Figure 6. The surface of v(x, t) for HPGTM solution w.r.t. x and t for α = 0.75.

Figure 7. The surface of v(x, t) for HPGTM solution w.r.t. x and t for α = 0.50.
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Figure 8. The surface of v(x, t) for HPGTM solution w.r.t. x and t for α = 0.25.

Figure 9. The surface of Exact solution v(x, t) w.r.t. x and t.

Figure 10. Response of q-HAGTM solution v(x, t) w.r.t. t for distinct values of α.
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Figure 11. Response of HPGTM solution v(x, t) w.r.t. t for distinct values of α.

Figure 12. Nature of v(x, t) w.r.t. x at t = 0.005.

Figure 13. Nature of v(x, t) w.r.t. x at t = 0.005.
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Figure 14. n-curves for distinct values of α at x = 1, t = 0.05 and ~ = −1.

7. Conclusions

In this current work, we successfully implemented two techniques, namely q-HAGTM and
HPGTM, to analyze the approximate series solution of FMDP equation. Graphical representation of
the obtained results indicates that the implemented techniques are powerful and efficient for solving
FMDP equation. The comparative study of approximate solutions with exact solution shows the
accuracy and applicability of the applied techniques. Hence, we can conclude that the applied
methods are efficient to solve such types of problems arising in physical sciences.
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