期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:131
Differential invariants of Einstein-Weyl structures in 3D
Article
Kruglikov, Boris1  Schneider, Eivind1 
[1] UiT Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
关键词: Manakov-Santini equation;    Equivalence pseudogroup;    Hilbert polynomial;    Poincare function;    Lax pair;   
DOI  :  10.1016/j.geomphys.2018.05.011
来源: Elsevier
PDF
【 摘 要 】

Einstein-Weyl structures on a three-dimensional manifold M are given by a system epsilon of PDEs on sections of a bundle over M. This system is invariant under the Lie pseudogroup g of local diffeomorphisms on M. Two Einstein-Weyl structures are locally equivalent if there exists a local diffeomorphism taking one to the other. Our goal is to describe the quotient equation epsilon/g whose solutions correspond to nonequivalent Einstein-Weyl structures. The approach uses symmetries of the Manakov-Santini integrable system and the action of the corresponding Lie pseudogroup. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2018_05_011.pdf 541KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次