期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:113
Differential invariants of self-dual conformal structures
Article
Kruglikov, Boris1  Schneider, Eivind1 
[1] Univ Tromso, NT Fac, Inst Math & Stat, N-9037 Tromso, Norway
关键词: Differential invariants;    Invariant derivations;    Self-duality;    Conformal metric structure;    Hilbert polynomial;    Poincare function;   
DOI  :  10.1016/j.geomphys.2016.05.017
来源: Elsevier
PDF
【 摘 要 】

We compute the quotient of the self-duality equation for conformal metrics by the action of the diffeomorphism group. We also determine Hilbert polynomial, counting the number of independent scalar differential invariants depending on the jet-order, and the corresponding Poincare function. We describe the field of rational differential invariants separating generic orbits of the diffeomorphism pseudogroup action, resolving the local recognition problem for self-dual conformal structures. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2016_05_017.pdf 438KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次