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We compute the quotient of the self-duality equation for conformal metrics by the
action of the diffeomorphism group. We also determine Hilbert polynomial, counting the
number of independent scalar differential invariants depending on the jet-order, and the
corresponding Poincaré function. We describe the field of rational differential invariants
separating generic orbits of the diffeomorphism pseudogroup action, resolving the local
recognition problem for self-dual conformal structures.
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Introduction

Self-duality is an important phenomenon in four-dimensional differential geometry that has numerous applications in
physics, twistor theory, analysis, topology and integrability theory. A pseudo-Riemannian metric g on an oriented four-
dimensional manifold M determines the Hodge operator ∗ : Λ2TM → Λ2TM that satisfies the property ∗

2
= 1 provided g

has the Riemannian or split signature. In this paper we restrict to these two cases, ignoring the Lorentzian signature.
The Riemann curvature tensor splits into O(g)-irreducible pieces Rg = Scg + Ric0 + W , where the last part is the Weyl

tensor [1] and O(g) is the orthogonal group of g . In dimension 4, due to exceptional isomorphisms so(4) = so(3) ⊕ so(3),
so(2, 2) = so(1, 2) ⊕ so(1, 2), the last component splits further W = W+ + W−, where ∗W± = ±W±. Metric g is called
self-dual if ∗W = W , i.e. W− = 0. This property does not depend on conformal rescalings of the metric g → e2ϕg , and so
is the property of the conformal structure [g].

Since the space of W− has dimension 5, and the conformal structure has 9 components in 4D, the self-duality equation
appears as an underdetermined system of 5 PDE on 9 functions of 4 arguments. This is however amisleading count, since the
equation is natural, and the diffeomorphismgroup acts as the symmetry group of the equation. SinceDiff(M) is parametrized
by 4 functions of 4 arguments, we expect to obtain a system of 5 PDE on 5 = 9 − 4 functions of 4 arguments.

This 5×5 system is determined, but it has never beenwritten explicitly. There are two approaches to eliminate the gauge
freedom.

Oneway to fix the gauge is to pass to the quotient equation that is obtained as a system of differential relations (syzygies)
on a generating set of differential invariants. By computing the latter for the self-dual conformal structures we write the
quotient equation as a nonlinear 9 × 9 PDE system, which is determined but complicated to investigate.

Another approach is to get a cross-section or a quasi-section to the orbits of the pseudogroup G = Diffloc(M) action on
the space SD = {[g] : W− = 0} of self-dual conformal metric structures. This was essentially done in the recent work
[2, III.A]: By choosing a convenient ansatz the authors of that work encoded all self-dual structures via a 3 × 3 PDE system
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SDE of the second order (this works for the neutral signature; in the Riemannian case use doubly biorthogonal coordinates
to get self-duality as a 5 × 5 second-order PDE system [2, III.C] that can be investigated in a similar manner as the 3 × 3
system).

In this way almost all gauge freedom was eliminated, yet a part of symmetry remained shuffling the structures. This
pseudogroup G is parametrized by 5 functions of 2 arguments (and so is considerably smaller than G). We fix this freedom
by computing the differential invariants of G-action on SDE and passing to the quotient equation.

The differential invariants are considered in rational–polynomial form, as in [3]. This allows to describe the algebra of
invariants in Lie–Tresse approach, and also using the principle of n-invariants of [4]. We count differential invariants in both
approaches and organize the obtained numbers in the Hilbert polynomial and the Poincaré function.

1. Scalar invariants of self-dual structures

The first approach to compute the quotient of the self-duality equation by the local diffeomorphisms pseudogroup G
action is via differential invariants of self-dual structures SD . The signature of themetric g or conformalmetric structure [g]
is either (2, 2) or (4, 0). In this and the following two sectionswe assume that g is a Riemannianmetric onM for convenience.
Consideration of the case (2, 2) is analogous.

To distinguish between metrics and conformal structures we will write SDm for the former and SDc for the latter.
Denote the space of k-jets of such structures by SDk

m and SDk
c respectively. These clearly form a tower of bundles over M

with projections πk,l : SDk
x → SD l

x, πk : SDk
x → M , where x is eitherm or c.

1.1. Self-dual metrics: invariants

Consider the bundle S2
+
T ∗M of positively definite quadratic forms on TM and its space of jets Jk(S2

+
T ∗M). The equation

W− = 0 in 2-jets determines the submanifold SD2
m ⊂ J2, and its prolongations are SDk

m ⊂ Jk for k > 2.
Computation of the stabilizer of the action shows that the submanifolds SDk

m are regular, meaning that generic orbits of
the G-action in SDk

m have the same dimension as in Jk(S2
+
T ∗M). This is based on a simple observation that generic self-dual

metrics have no symmetry at all. Thus the differential invariants of the action on SDk
m can be obtained from the differential

invariants on the jet space Jk [5,6].
These invariants can be constructed as follows. There are no invariants of order ≤1 due to existence of geodesic

coordinates, the first invariants arise in order 2 and they are derived from the Riemann curvature tensor (as this is the
only invariant of the 2-jet of g). Traces of the Ricci tensor Tr(Rici), 1 ≤ i ≤ 4, yield 4 invariants I1, . . . , I4 that in a Zariski
open set of jets of metrics can be considered horizontally independent, meaning d̂I1 ∧ · · · ∧ d̂I4 ≠ 0.

To get other invariants of order 2, choose an eigenbasis e1, . . . , e4 of the Ricci operator (in a Zariski open set it is simple),
denote the dual coframe by {θ i

} and decompose Rg = Ri
jklei ⊗ θ j

⊗ θ k
∧ θ l. These invariants include the previous Ii, and the

totality of independent second-order invariants for self-dual metrics is

dim{Rg |W− = 0} − dimO(g) = (20 − 5) − 6 = 9.

The invariants Ri
jkl are however not algebraic, but obtained as algebraic extensions via the characteristic equation. Then Ri

jkl
(9 independent components) and ei generate the algebra of invariants.

Alternatively, compute the basis of Tresse derivatives ∇i = ∂̂Ii and express the metric in the dual coframe ωj
= d̂Ij:

g = Gijω
iωj. Then the functions Ii,Gkl generate the space of invariants by the principle of n-invariants [4].

Remark. There is a natural almost complex structure Ĵ on the twistor space of self-dual (M, g), i.e. on the bundle M̂ over
M whose fiber at a consists of the sphere of orthogonal complex structures on TaM inducing the given orientation. The
celebrated theoremof Penrose [7,1] states that self-duality is equivalent to integrability of Ĵ . Thus local differential invariants
of g can be expressed through semi-global invariants of the foliation of the three-dimensional complex space M̂ by rational
curves. Similarly in the split signature one gets foliation by α-surfaces, and the geometry of this foliation of M̂ yields the
invariants onM .

We explain how to get rid of non-algebraicity in the next subsection.

1.2. Self-dual conformal structures: invariants

Here the invariants of the second order are obtained from the Weyl tensor as the only conformally invariant part of the
Riemann tensor Rg . For general conformal structures a description of the scalar invariants was given recently in [8]. In our
case W = W+ + W− the second component vanishes, and so we have only 5-dimensional space of curvature tensors W ,
namely Weyl parts of Rg considered as (3, 1) tensors.

Let us fix a representative of the conformal structure g0 ∈ [g] by the requirement ∥W+∥
2
g0 = 1, this uniquely determines

g0 provided that W+ is non-vanishing in a neighborhood (in the case of neutral signature we have to require ∥W+∥
2
g ≠ 0
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for some and hence any metric g ∈ [g] and then we can fix g0 up to ± by the requirement ∥W+∥
2
g0 = ±1). Use this

representative to convert W+ into a (2, 2)-tensor, considered as a map W+ : Λ2T → Λ2T , where T = TaM for a fixed
a ∈ M .

Recall [1] that the operatorW = W++W− is block-diagonal in terms of the Hodge ∗-decompositionΛ2T = Λ2
+
T⊕Λ2

−
T .

Thus W+ : Λ2
+
T → Λ2

+
T is a map of 3-dimensional spaces and it is traceless of norm 1. For the spectrum Sp(W+) =

{λ1, λ2, λ3} this means


λi = 0, max |λi| = 1. To conclude, we have only one scalar invariant of order 2, for which we can
take I = Tr(W 2

+
).

To obtain more differential invariants we proceed as follows. It is known that Riemannian conformal structure in 4D
is equivalent to a quaternionic structure (split-quaternionic in the split-signature). In the domain, where Sp(W+|Λ2

+
) is

simple we even get a hyper-Hermitian structure (on the bundle TM pulled back to SD2
c , so no integrability conditions for

the operators J1, J2, J3) as follows.
Let σi ∈ Λ2

+
be the eigenbasis of W+ corresponding to eigenvalues λi, normalized by ∥σi∥

2
g0 = 1 (this still leaves ±

freedom for every σi). These 2-forms are symplectic (=nondegenerate, since again these are forms on a bundle over SD2
c )

and g0-orthogonal, so the operators Ji = g−1
0 σi are anti-commuting complex operators on the space T , and they are in

quaternionic relations up to the sign. We can fix one sign by requiring J3 = J1J2, but still have residual freedom Z2 × Z2.
Now we can fix a canonical (up to above residual symmetry) frame, depending on the 3-jet of [g], as follows: e1 =

g−1
0 d̂I/∥g−1

0 d̂I∥g0 , e2 = J1e1, e3 = J2e1, e4 = J3e1. The structure functions of this frame ckij (given by [ei, ej] = ckijek) together
with I constitute the fundamental invariants of the conformal structure (we can fix, for instance, I1 = I , I2 = c112, I3 = c113,
I4 = c114 to be the basic invariants), and together with the invariant derivations ∇j = Dej (total derivative along ej) they
generate the algebra of scalar differential invariants micro-locally.

The micro-locality comes from non-algebraicity of the invariants. Indeed, since we used eigenvalues and eigenvectors
in the construction, the output depends on an algebraic extension via some additional variables y. Notice though that this
involves only 2-jet coordinates, i.e. the y-variables are in algebraic relationswith the fiber variables of the projection J2 → J1,
andwith respect to higher jets everything is algebraic. Thuswe can eliminate the y-variables, aswell as the residual freedom,
and obtain the algebra of global rational invariants Al.

Here l is the order of jet from which only polynomial behavior of the invariants can be assumed [3]. This yields the
Lie–Tresse type description of the algebra Al.

It is easy to see that the rational expressions occur at most on the level of 3-jets, so the generators of the rational algebra
can be chosen polynomial in the jets of order >3. Thus we conclude:

Theorem 1. The algebra A3 of rational–polynomial invariants as well as the field F of rational differential invariants of self-
dual conformal metric structures are both generated by a finite number of (the indicated) differential invariants Ii and invariant
derivations ∇j, and the invariants from this algebra/field separate generic orbits in SD∞

c .

A similar statement also holds true for metric invariants of SD∞
m .

2. Stabilizers of generic jets

Ourmethod to compute the number of independent differential invariants of order k follows the approach of [6]. Wewill
use the jet-language from the formal theory of PDE, and refer the reader to [9].

Fix a point a ∈ M . Denote by Dk the Lie group of k-jets of diffeomorphisms preserving the point a. This group is obtained
from D1 = GL(T ) by successive extensions according to the exact 3-sequence

0 → ∆k −→ Dk −→ Dk−1 → {e},

where ∆k = {[ϕ]
k
x : [ϕ]

k−1
x = [id]k−1

x } ≃ SkT ∗
⊗ T is Abelian (k > 1).

Denote by Stk ⊂ Dk+1 the stabilizer of a generic point ak ∈ SDk
x, and by St0k its connected component of unity.

2.1. Self-dual metrics: stabilizers

We refer to [6] for computations of stabilizers and note that even though the computation there is done for generic
metrics, it applies to self-dual metrics as well. Thus in the metric case the stabilizers are the following: St0 = St1 = O(g),
and St0k = 0 for k ≥ 2.

Consequently the action of the pseudogroup G on jets of order k ≥ 2 is almost free, meaning that Dk+1 has a discrete
stabilizer on SDk

m|a.

2.2. Self-dual conformal structures: stabilizers

The stabilizers for general conformal structures were computed in [8]. In the self-dual case there is a deviation from the
general result. Denote by CM = S2

+
T ∗M/R+ the bundle of conformal metric structures.
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Lemma 2 ([8]). The following is a natural isomorphism:

T[g](CM) = Endsym
0 (T ) = {A : T → T | g(Au, v) = g(u, Av), Tr(A) = 0}.

Denote VM = T[g](CM). The differential group Dk+1 acts on SDk
c , in particular ∆k+1 acts on it. The next statement is

obtained by a direct computation of the symbol of Lie derivative.

Lemma 3. The tangent to the orbit ∆k+1(ak) is the image Im(ζk) ⊂ TSDk
c of themap ζk that is equal to the following composition

Sk+1T ∗
⊗ T

δ
−→ SkT ∗

⊗ (T ∗
⊗ T )

1⊗Π
−→ SkT ∗

⊗ VM .

Here δ is the Spencer operator and Π : T ∗
⊗ T → VM ⊂ T ∗

⊗ T is the projection given by

⟨p, Π(B)u⟩ =
1
2 ⟨p, Bu⟩ +

1
2 ⟨u♭, Bp♯

⟩ −
1
nTr(B)⟨p, u⟩,

where u ∈ T , p ∈ T ∗, B ∈ T ∗
⊗ T are arbitrary, ⟨·, ·⟩ denotes the pairing between T ∗ and T , and u♭ = g(u, ·), p♯

= g−1(p, ·) for
some representative g ∈ [g], on which the right-hand side does not depend.

Recall that ith prolongation of a Lie algebra h ⊂ End(T ) is defined by the formula h(i)
= S i+1T ∗

⊗ T ∩ S iT ∗
⊗ h. As is

well-known, for the conformal algebra of [g] it holds: co(g)(1) = T ∗ and co(g)(i) = 0, i > 1.

Lemma 4. We have Ker(ζk) = 0 for k > 1, and therefore the projectors ρk+1,k : Dk+1 → Dk induce the injective homomor-
phisms Stk → Stk−1 and St0k → St0k−1 for k > 1.

Proof. If ζk(Ψ ) = 0, then δ(Ψ ) ∈ SkT ∗
⊗ co(g), where co(g) ⊂ End(T ) is the conformal algebra. This means that Ψ ∈

co(g)(k+1)
= 0, if k > 1. Thus we conclude injectivity of ζk: ∆k+1 ∩ Stk = {e}, whence the second claim. �

The stabilizers of low order (for any dimension n ≥ 3) are the following. For every point a0 ∈ CM its stabilizer is
St0 = CO(g) = (Sp(1) ×Z2 Sp(1)) × R+.

Next, the stabilizer St1 ⊂ D2 of a point a1 ∈ J1(CM) is the extension (by derivations) of St0 by co(g)(1) = T ∗
ι

↩→ ∆2,
where ι : T ∗

→ S2T ∗
⊗ T is given by

ι(p)(u, v) = ⟨p, u⟩v + ⟨p, v⟩u − ⟨u♭, v⟩p♯,

for p ∈ T ∗, u, v ∈ T . In other words, we have St1 = CO(g) n T .
Since for G-action on SD2

c there is precisely 1 scalar differential invariant, we get dim St2 = (16 + 40 + 80) − (9 +

36 + 85 − 1) = 7. This can be also seen as follows. Since St02 ⊂ St1 preserves the hyper-Hermitian structure determined
by generic 2-jet a2 ∈ SD2

c (see Section 1) the R+ factor and one of the Sp(1) copies in St0 disappears from the stabilizer of
2-jet, and we get St02 ≃ Sp(1) n T .

Lemma 5. For k ≥ 3 we have: St0k = {e}.

Proof. In Section 1 we constructed a canonical frame e1, . . . , e4 on T depending on (generic) jet a3. In other words, we
constructed a frame on the bundle π∗

3 TM over a Zariski open set in SD3
c .

The elements from St03 shall preserve this frame, and so the last component Sp(1) from St0 is reduced. But also the
elements from St03 shall preserve the 1-jet of the hyper-Hermitian structure and the invariant I determined by 2-jets, whence
also the factor T is reduced, and St03 is trivial (we take the connected component because of the undetermined signs ± in
the normalizations). Hence the stabilizers St0k for k ≥ 3 are trivial as well. �

3. Hilbert polynomial and Poincaré function for SD

Nowwe can compute the number of independent differential invariants. Since G acts transitively onM the codimension
of the orbit of G in SDk

x is equal to the codimension of the orbit of Dk+1 in SDk
x|a (where a ∈ M is a fixed point and x is

eitherm or c). Denoting the orbit through a generic k-jet ak by Ok ⊂ SDk
x|a we have:

dim(Ok) = dimDk+1 − dim Stk.
Notice that

codim(Ok) = dim SDk
x|a − dim(Ok) = trdegFk

is the number of (functionally independent) scalar differential invariants of order k (here trdegFk is the transcendence degree
of the field of rational differential invariants on SDk

x).
The Hilbert function is the number of ‘‘pure order’’ k differential invariants H(k) = trdegFk − trdegFk−1. It is known to

be a polynomial for large k, so we will refer to it as the Hilbert polynomial.
The Poincaré function is the generating function for the Hilbert polynomial, defined by P(z) =


∞

k=0 H(k)zk. This is a
rational function with the only pole z = 1 of order equal to the minimal number of invariant derivations in the Lie–Tresse
generating set [3].
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3.1. Counting differential invariants

The results of Section 2 allow to compute the Hilbert polynomial and the Poincaré function.

Theorem 6. The Hilbert polynomial for G-action on SDm is

Hm(k) =

0 for k < 2,
9 for k = 2,
1
6 (k − 1)(k2 + 25k + 36) for k > 2.

The corresponding Poincaré function is equal to

Pm(z) =
z2(9 + 4z − 30z2 + 24z3 − 6z4)

(1 − z)4
.

Notice that Hm(k) ∼
1
3! k

3, meaning that the moduli of self-dual metric structures are parametrized by 1 function of 4
arguments. This function is the unavoidable rescaling factor.

Proof. As for the general metrics, there are no invariants of order <2. Since St02 = 0, we have:

Hm(2) = dim SD2
m|a − dimD3 = (10 + 40 + 95) − (16 + 40 + 80) = 9.

Alternatively, the only invariant of the 2-jet of a metric is the Riemann curvature tensor. Since W− = 0, it has 20 − 5 = 15
components and is acted upon effectively by the group O(g) of dimension 6; hence the codimension of a generic orbit is
15 − 6 = 9.

Starting from 2-jet we impose the self-duality constraint that, as discussed in the introduction, consist of 5 equations
and is a determined system (mod gauge). In particular, there are no differential syzygies between these 5 equations, so that
in ‘‘pure’’ order k ≥ 2 the number of independent equations is 5 ·

k+1
3


. Thus the symbol of the self-duality metric equation

W− = 0 on g , given by

gk = Ker(dπk,k−1 : TSDk
m → TSDk−1

m )

has dimension dim(SkT ∗
⊗ S2T ∗) − #[independent equations].

Since the pseudogroup G acts almost freely on jets of order k ≥ 2 (freely from some order k), we have:

Hm(k) = dim gk − dim∆k+1 = 10 ·


k + 3
3


− 5 ·


k + 1
3


− 4 ·


k + 4
3


whence the claim for the Hilbert polynomial. The formula for the Poincaré function follows. �

Theorem 7. The Hilbert polynomial for G-action on SDc is

Hc(k) =


0 for k < 2,
1 for k = 2,
13 for k = 3,
3k2 − 7 for k > 3.

The corresponding Poincaré function is equal to

Pc(z) =
z2(1 + 10z + 5z2 − 17z3 + 7z4)

(1 − z)3
.

Notice that Hc(k) ∼ 6 ·
1
2! k

2, meaning that the moduli of self-dual conformal metric structures are parametrized by 6
function of 3 arguments. This confirms the count in [10,2].

Proof. As for the general metrics, there are no invariants of order <2. We already counted Hc(2) = 1. Since St03 = 0, we
have:

Hc(3) = dim SD3
m|a − dimD4 − Hc(2)

= (9 + 36 + 85 + 160) − (16 + 40 + 80 + 140) − 1 = 13.

Starting from 2-jet we impose the self-duality constraint, and we computed in the previous proof that this yields 5 ·
k+1

3


independent equations of ‘‘pure’’ order k ≥ 2. Thus the symbol of the self-duality conformal equationW− = 0 on [g], given
by

gk = Ker(dπk,k−1 : TSDk
c → TSDk−1

c ),

has dimension= dim(SkT ∗
⊗ (S2T ∗/R+)) − #[independent equations].



6 B. Kruglikov, E. Schneider / Journal of Geometry and Physics ( ) –

Since the pseudogroup G acts almost freely on jets of order k ≥ 3 (freely from some order k), we have:

Hc(k) = dim gk − dim∆k+1 = 9 ·


k + 3
3


− 5 ·


k + 1
3


− 4 ·


k + 4
3


whence the claim for the Hilbert polynomial. The formula for the Poincaré function follows. �

3.2. The quotient equation

Let I1, . . . , I4 be the basic differential invariants of self-dual conformal structures. For generic such structures c these
invariant evaluated on c are independent. Thus we can fix the gauge by requiring Ii = xi, i = 1, . . . , 4, to be the local
coordinates on M . This adds 4 differential equations to 5 equations of self-duality on 9 components of c. Consequently,
denoting

Σ∞ = {θ ∈ SD∞

c : d̂I1 ∧ d̂I2 ∧ d̂I3 ∧ d̂I4 is not defined at θ or vanishes},
the moduli space (SD∞

c \ Σ∞)/G is given as 9 × 9 PDE system
W− = 0, I1 = x1, . . . , I4 = x4.

4. The self-duality equation

In the second approach we use a 3 × 3 PDE system from [2] which encodes all self-dual conformal structures. It was
shown in [2] that any anti-self-dual conformal structure in neutral signature (2, 2) locally takes the form [g] where

g = dtdx + dzdy + p dt2 + 2q dtdz + r dz2. (1)
Here p, q, r are functions of (t, x, y, z) which satisfy the following three second-order PDEs:

pxx + 2qxy + ryy = 0,
mx + ny = 0,
mz − qmx − rmy + (qx + ry)m = nt − pnx − qny + (px + qy)n,

(2)

where
m := pz − qt + pqx − qpx + qqy − rpy, n := qz − rt + qry − rqy + prx − qqx.

Conversely, any such conformal structure is anti-self-dual. Therefore we can, instead of looking at arbitrary self-dual
conformal structures, look at conformal structures [g] where g is a metric of the Plebański–Robinson form (1) satisfying (2).
So from now on we restrict to self-dual conformal structures in the neutral signature (2, 2).

Remark. These equations are admittedly describing anti-self-dual metrics (∗W = −W ) instead of self-dual metrics (∗W =

W ). However, in order to define the Hodge operator, one must specify an orientation. Change of orientation interchanges
the equations, so from a local viewpoint self-dual and anti-self-dual structures are the same.

Conformal structures of the form (1) are parametrized by sections of the bundle π : CPR
M = M × R3(p, q, r) → M ,

where M = R4(t, x, y, z). Self-dual conformal structures must, in addition, satisfy system (2), so they are described by a
second-order PDE

SDE2 = {θ = [(p, q, r)]2x : x ∈ M, θ satisfies (2)} ⊂ J2(CPR
M ).

We let SDE k ⊂ Jk = Jk(CPR
M ) denote the prolonged equation. From now on we will omit specification of the bundle over

which the jet spaces are constructed, because it will always be CPR
M in what follows.

The prolonged equation SDE k is given by 3
k+2

4


equations in Jk since the system (2) is determined. By subtracting this

from the jet space dimension dim Jk = 4 + 3
k+4

4


, we find

dim SDE k = 4 + 3

k + 4
4


− 3


k + 2
4


= k3 +

9
2
k2 +

13
2

k + 7.

5. Symmetries of SDE

Self-dual conformal structures locally correspond to sections of CPR
M that are solutions of SDE . This correspondence is

not 1–1 as there is some residual freedom left: two solutions of SDE can still be equivalent up to diffeomorphisms. The goal
is to remove this freedom by factoring by diffeomorphisms that preserve the shape of the conformal structure [g] where g
is in Plebański–Robinson form (1).

These transformations form the symmetry pseudogroup G of the equation SDE . We will study its Lie algebra g. By the
Lie–Bäcklund theorem [11] for our equation all symmetries are (prolongations of) point transformations. It turns out that
the Lie algebra of symmetries is the same as the Lie algebra of vector fields preserving the shape of [g].
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5.1. Symmetries of SDE

Avector fieldX on J0 is a symmetry ofSDE if the prolonged vector fieldX (2) is tangent toSDE2 ⊂ J2, i.e. ifX (2)(Fi) = λ
j
iFj,

where F1 = 0, F2 = 0, F3 = 0 are the three equations (2). This gives an overdetermined system of PDEs that can be solved
by the standard technique, and we obtain the following result:

Theorem 8. The Lie algebra g of symmetries of SDE is generated by the following five classes of vector fields X1(a), X2(b), X3(c),
X4(d), X5(e), each of which depends on a function of (t, z):

a∂t − xat∂x − xaz∂y + (xatt − 2pat)∂p + (xatz − qat − paz)∂q + (xazz − 2qaz)∂r ,
b∂z − ybt∂x − ybz∂y + (ybtt − 2qbt)∂p + (ybtz − qbz − rbt)∂q + (ybzz − 2rbz)∂r ,

cx∂x + cy∂y + (cp − xct)∂p + (cq −
1
2xcz −

1
2yct)∂q + (cr − ycz)∂r ,

d∂x − dt∂p −
1
2dz∂q,

e∂y −
1
2 et∂q − ez∂r .

The following table shows the commutation relations.

[, ] X1(g) X2(g) X3(g) X4(g) X5(g)

X1(f ) X1(fgt − ftg) X2(fgt) − X1(fzg) X3(fgt) X4((fg)t) + X5(fzg) X5(fgt)
X2(f ) ∗ X2(fgz − fzg) X3(fgz) X4(fgz) X4(ftg) + X5((fg)z)
X3(f ) ∗ ∗ 0 −X4(fg) −X5(fg)
X4(f ) ∗ ∗ ∗ 0 0
X5(f ) ∗ ∗ ∗ ∗ 0

Notice that the Lie algebra is bi-graded g = ⊕gi,j, meaning that [gi1,j1 , gi2,j2 ] ⊂ gi1+i2,j1+j2 with nontrivial graded pieces

g0,0 = ⟨X1, X2⟩, g0,1 = ⟨X3⟩, g1,∞ = ⟨X4, X5⟩.

5.2. Shape-preserving transformations

We say that a transformation ϕ ∈ Diffloc(M) preserves the PR-shape if for every [g] ∈ Γ (CPR
M ) we have [ϕ∗g] ∈ Γ (CPR

M ).
A vector field X on R4 preserves the PR-shape if its flow does so.

Theorem 9. The Lie algebra of vector fields preserving the PR-shape is generated by the five classes of vector fields

a∂t − xat∂x − xaz∂y, b∂z − ybt∂x − ybz∂y, cx∂x + cy∂y, d∂x, e∂y

where a, b, c, d, e are arbitrary functions of (t, z).

Proof. In order to find the Lie algebra of vector fields preserving the shape of [g], we let X = f1∂t + f2∂x + f3∂y + f4∂z be a
general vector field and take the Lie derivative LXg . The vector field preserves the PR-shape of [g] if

LXg = ϵ · (dtdx + dzdy) + p̃ dt2 + 2q̃ dtdz + r̃ dz2

for some functions ϵ, p̃, q̃, r̃ . This gives an overdetermined system of 6 PDEs on 4 unknownswith the solutions parametrized
by 5 functions of 2 variables as indicated. �

5.3. Unique lift to J0

The conformal metric (1) can also be considered as a horizontal (degenerate) symmetric tensor cPR on CPR
M . Namely,

cPR ∈ Γ (π∗S2T ∗M/R+) is given at the point (t, x, y, z, p, q, r) ∈ CPR
M via its representative g by formula (1). The algebra

of vector fields X preserving the shape of [g] is naturally lifted to CPR
M by the requirement LX̂cPR = 0. This requirement

algebraically restores the vertical components of the vector fields X1, . . . , X5 from Theorem 9 yielding the symmetry fields
from Theorem 8. We conclude:

Theorem 10. The Lie algebra of transformations preserving the PR-shape coincides with the Lie algebra g of point symmetries of
SDE .

Thus the conformal structure cPR uniquely restores g = sym(SDE).
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5.4. Conformal tensors invariant under g

The goal of this subsection is to show that the simplest conformally invariant tensor with respect to g is cPR, so that the
conformal structure (of PR-shape) is in turn uniquely determined by g.

We aim to describe the horizontal conformal tensors on CPR
M that are invariant with respect to g. Since g acts transitively

on CPR
M , we consider the stabilizer St0 ⊂ g of the point given by (t, x, y, z, p, q, r) = (0, 0, 0, 0, 0, 0) in CPR

M . Denote by Stk0
the subalgebra of g consisting of fields vanishing at 0 to order k, so that St0 = St10.

It is easy to see from formulae of Theorem 8 that the space St10/St
2
0 is 18-dimensional, and 12 of the generators are vertical

(belong to ⟨∂p, ∂q, ∂r⟩). The complimentary linear fields have the horizontal parts

Y1 = t∂t − x∂x, Y2 = z∂t − x∂y, Y3 = t∂z − y∂x,
Y4 = z∂z − y∂y, Y5 = x∂x + y∂y, Y6 = z∂x − t∂y.

They form a 6-dimensional Lie algebra h acting on the horizontal space T = T0M = T0CPR
M /Ker(dπ). This Lie algebra is

a semi-direct product of the reductive part h0 = ⟨Y1, Y2, Y3, Y4, Y5⟩ and the nilpotent piece r = ⟨Y6⟩ (the nilradical is 2-
dimensional). The reductive piece splits in turn h0 = sl2 ⊕ a, where the semi-simple part is sl2 = ⟨Y1 − Y4, Y2, Y3⟩ and the
Abelian part is a = ⟨Y1 + Y4, Y5⟩.

It is easy to see that the space T is h0-reducible. In fact, with respect to h0 it is decomposable T = Π1 ⊕ Π2
= ⟨∂t , ∂z⟩ ⊕ ⟨∂x, ∂y⟩, and Π1, Π2 are the standard sl2-representations (denoted by Π in what follows). However r maps
Π1 to Π2 and Π2 to 0. This Π2 ⊂ T is an h-invariant subspace, but it does not have an h-invariant complement.

Moreover, Π2 is the only proper h-invariant subspace, so there are no conformally invariant vectors (invariant 1-space)
and covectors (invariant 3-space). We summarize this as follows.

Lemma 11. There are no horizontal 1-tensors on CPR
M that are conformally invariant with respect to g.

Now, let us consider conformally invariant horizontal 2-tensors. Since cPR is g-invariant, we can lower the indices and
consider (0, 2)-tensors. We have the splitting T∗

⊗ T∗
= Λ2T∗

⊕ S2T∗.
The symmetric part further splits S2(Π∗

1 ⊕ Π∗

2 ) = S2Π∗

1 ⊕ (Π∗

1 ⊗ Π∗

2 ) ⊕ S2Π∗

2 . As an sl2-representation, this is equal
to 3 · S2Π ⊕ Λ2Π = 3 · ad ⊕ 1, and the only one trivial piece 1 ⊂ Π∗

1 ⊗ Π∗

2 (which is also h-invariant) is spanned by cPR.
Here Π∗

1 = ⟨dt, dz⟩ and Π∗

2 = ⟨dx, dy⟩. Thus there are no g-invariant symmetric conformal 2-tensors except cPR.
The skew-symmetric part further splits Λ2(Π∗

1 ⊕ Π∗

2 ) = Λ2Π∗

1 ⊕ (Π∗

1 ⊗ Π∗

2 ) ⊕ Λ2Π∗

2 , and as an sl2-representation,
this is equal to S2Π ⊕ 3 · Λ2Π = ad ⊕ 3 · 1. Thus there are three sl2-trivial pieces, and they are h0-invariant. However only
one of them is r-invariant, namely Λ2Π∗

1 that is spanned by dz ∧ dt . Thus we have proved the following statement.

Theorem 12. The only conformally invariant symmetric 2-tensor is cPR. The only conformally invariant skew-symmetric 2-tensor
is dz ∧ dt.

Since dz ∧ dt is degenerate and does not define a convenient geometry, cPR is the simplest g-invariant conformal tensor.

5.5. Algebraicity of g

We say that the Lie algebra g is algebraic if its sheafification is equal to the Lie algebra sheaf of some algebraic pseudo-
group G (see definition of an algebraic pseudo-group in [3]). Algebraicity of g is important because it guarantees, through
the global Lie–Tresse theorem [3], existence of rational differential invariants separating generic orbits (by [12] this yields
rational quotient of the action on every finite jet-level).

Let Dk ⊂ Jk(θ,θ)(C
PR
M , CPR

M ) denote the differential group of order k at θ ∈ CPR
M . The stabilizer Gθ ⊂ G of θ can be viewed

as a collection of subbundles Gk
θ ⊂ Dk. The transitive Lie pseudo-group G is algebraic if Gk

θ is an algebraic subgroup of Dk

for every k. This is independent of the choice of θ since G is transitive, implying that subgroups Gk
θ ⊂ Dk are conjugate for

different points θ ∈ CPR
M .

When determining whether g is algebraic, there are essentially two approaches. One is to try to see it from the stabilizer
gθ alone, and the other is to integrate g in order to investigate the pseudo-group Gθ . It turns out that the latter is more
efficient in our case.

Consider the following pseudo-group G given via its action on CPR
M , where A, B, C,D, E are arbitrary functions of (z, t).

t → T = A, z → Z = B

x → X = x
C
At

− yBt + D, y → Y = y
C
Bz

− xAz + E

p → P = p
C
A2
t

− Dt − xCt + yBtt − 2qBt + xAtt

q → Q = q
C

BzAt
−

1
2 (Et + Dz + xCz + yCt) + yBtz − rBt + xAtz − pAz
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r → R = r
C
B2
z

− Ez − yCz + yBzz + xAzz − 2qAz .

It is easy to check that this is a Lie pseudo-group (one should specify the differential equations defining G, and they are
Tx = 0, . . . , Tr = 0, . . . , Xy + Zt = 0, . . .). Moreover it is easy to check that the Lie algebra sheaf of G coincides with the
sheafification of g.

Theorem 13. The Lie pseudo-group G and consequently the Lie algebra g are algebraic.

Proof. The subgroups Gk
θ of Dk are constructed by repeated differentiation of T , . . . , R by t, . . . , r and evaluation at θ . The

formulae for the group action make it clear that Gk
θ will always be an algebraic subgroup of Dk (they provide a rational

parametrization of it as a subvariety). Thus G is algebraic. The statement for g follows. �

Let us briefly explain how to read algebraicity from the Lie algebra g. Consider the Lie subalgebra f ⊂ gl(T0J0) obtained by
linearization of the isotopy algebra at 0 ∈ J0 = CPR

M . As already noticed in Section 5.4, this is an 18-dimensional subalgebra
admitting the following exact 3-sequence

0 → v −→ f −→ h → 0,

where v is the vertical part and h – the ‘‘horizontal’’ (that is the quotient). The explicit form of these vector fields comes from
Theorem 8:

v = ⟨x∂p, x∂q, x∂r , y∂p, y∂q, y∂r , t∂p, t∂q, t∂r , z∂p, z∂q, z∂r⟩,
h = sl2 + a + r, where r = ⟨z∂x − t∂y⟩,
sl2 = ⟨z∂t − x∂y − p∂q − 2q∂r , t∂z − y∂x − 2q∂p − r∂q, t∂t − z∂z − x∂x + y∂y − 2p∂p + 2r∂r⟩,
a = ⟨t∂t + z∂z − p∂p − q∂q − r∂r , x∂x + y∂y + p∂p + q∂q + r∂r⟩.

By [13] the subalgebra [f, f] ⊂ gl(T0J0) is algebraic. Since f is obtained from [f, f] = v + sl2 + r by extension by derivations
a, and the semi-simple elements in the latter have no irrational ratio of spectral values, we conclude that f ⊂ gl(T0J0) is an
algebraic Lie algebra [14]. The claim about algebraicity of g follows by prolongations.

6. Hilbert polynomial and Poincaré function for SDE

Even though g is just a PR-shape preserving Lie algebra, its prolongation to the space of 2-jets preserves SDE (this is an
unexpected remarkable fact), and we consider the orbits of g on this equation.

6.1. Dimension of generic orbits

We can compute the dimension of a generic orbit in SDE k or Jk by computing the rank of the system of prolonged
symmetry vector fields X (k) at a point in general position.

By prolonging the generators X1, . . . , X5 and with the help of Maple we observe that the Lie algebra g acts transitively on
J1. The dimension of a generic orbit on the Lie algebra acting on J2 is 44, but the equation SDE2 ⊂ J2 contains no generic
orbits, and if we restrict to SDE2 a generic orbit of g is of dimension 42. For higher jet-orders k > 2, the dimension of a
generic orbit is the same on SDE k as on Jk.

We are going to compute dimOk for k ≥ 3 as follows. Since g contains the translations ∂t , ∂z , all its orbits pass through
the subset Sk ⊂ Jk given by t = 0, z = 0. On Sk we can make the Taylor expansion of parametrizing functions a, b, c, d, e
around (t, z) = (0, 0).

We use X5(e) to show the idea. By varying the coefficients of the Taylor series e(t, z) = e(0, 0)+et(0, 0)t+ez(0, 0)z+· · ·

we see that the vector fields X5(m, n) = zmtn∂y −
n
2 z

mtn−1∂q − mzm−1tn∂r are contained in the symmetry algebra, with
the convention that t−1

= z−1
= 0, and any vector field of the form X5(e) is tangent to a vector field in ⟨X5(m, n)⟩. The

prolongation of a vector field takes the form

X (k)
=


i

aiD
(k+1)
i +


|σ |≤k

(Dσ (φp)∂pσ + Dσ (φq)∂qσ + Dσ (φr)∂rσ ) (3)

where Dσ is the iterated total derivative, D (k+1)
i the truncated total derivative (‘‘restriction’’ to the space Jk+1, cf. [11,9]),

ai = dxi(X) for (x1, x2, x3, x4) = (t, x, y, z), and φp, φq, φr are the generating functions for X , i.e. φp = ωp(X), φq =

ωq(X), φr = ωr(X) where

ωp = dp − ptdt − pxdx − pydy − pzdz,
ωq = dq − qtdt − qxdx − qydy − qzdz,
ωr = dr − rtdt − rxdx − rydy − rzdz.
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In the case of X5(m, n), the generating functions are given by

φp = −pyzmtn, φq = −
n
2 z

mtn−1
− qyzmtn, φr = −mzm−1tn − ryzmtn.

We see that the restriction of X5(m, n)(k) to the fiber over 0 ∈ CPR
M is nonzero only when m + n ≤ k + 1. Hence we can

parametrize ⟨X5(m, n)⟩(k) by Jk+1
0 (R2(t, z), R(e)), and by extending this argument to the whole symmetry algebra we get

(the vector fields Xk(m, n) for k = 1, . . . , 4, are defined similarly to the vector field X5(m, n) by simply substituting a = zmtn
etc. into the formulae of Theorem 8)

g(k)
= ⟨X1(m, n), X2(m, n), X4(m, n), X5(m, n)⟩(k) ⊕ ⟨X3(m, n)⟩(k)

= Jk+1
0 (R2(t, z), R4(a, b, d, e)) × Jk0(R

2(t, z), R(c)).

Using formula (3) we verify that the Lie algebra g(k) acts freely on SDE k for k ≥ 3, whence

dimOk = dim

Jk+1
0 (R2, R4) × Jk0(R

2, R)


= 4 dim

Jk+1
0 (R2, R)


+ dim


Jk0(R

2, R)


= 4

k + 3
2


+


k + 2
2


=

(k + 2)(5k + 13)
2

.

6.2. Counting the differential invariants

The number sk of differential invariants of order k (as before, this is trdeg Fk) is equal to the codimension of a generic
orbit of g on SDE k. For the lowest orders, we have s0 = s1 = 0 and s2 = dim SDE2 − dimO2 = 46 − 42 = 4. For higher
jet-orders, the number of invariants of order k is given by

sk = codimOk = dim SDE k − dimOk = k3 + 2k2 − 5k − 6, k ≥ 3.

The number of differential invariants of ‘‘pure order’’ k is then given by H(k) = sk − sk−1. The Poincaré function
P(z) =


∞

k=0 H(k)zk can now easily be computed, and we conclude:

Theorem 14. The Hilbert polynomial for the action of g on SDE is

H(k) =


0 for k < 2,
4 for k = 2,
20 for k = 3,
3k2 + k − 6 for k > 3.

The corresponding Poincaré function is equal to

P(z) =
2z2(2 + 4z − z2 − 4z3 + 2z4)

(1 − z)3
.

Notice that H(k) in this statement has the same leading term as H(k) in Theorem 7 for k > 3.
The following table summarizes the counting results from the last two subsections for low order k.

k 0 1 2 3 4 5 6 7 . . .

dim SDE k 7 19 46 94 169 277 424 616 . . .
dimOk 7 19 42 70 99 133 172 216 . . .
codimOk 0 0 4 24 70 144 252 400 . . .
H(k) 0 0 4 20 46 74 108 148 . . .

7. The invariants of SDE and the quotient equation

From the global Lie–Tresse theorem [3] and Theorem 13 it follows that there exist rational differential invariants of g-
action (or G-action) on SDE that separate generic orbits.
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7.1. Invariants of the second order

There are four independent differential invariants of the second order:

I1 =
1
K


pyyrxx − pxxryy + 2 pxyqxx + 4 q2xy + 2 qyyrxy


I2 =

1
K 3


qxyryy − qyyrxy


pxx +


pyyrxy − pxyryy


qxx +


pxyqyy − pyyqxy


rxx

2
I3 =

1
K 3


pyy


qxx − rxy

2
+ rxx


qyy − pxy

2
− 2 qxy


pxyqxx + qyyrxy − pxyrxy − 2 pyyrxx + 2 q2xy − qxxqyy

2
I4 =

1
K 2


p2xxr

2
yy + p2yyr

2
xx − 2 pxxpyyrxxryy + 4 pxxpyyr2xy + 4 p2xyrxxryy − 4 qxxqyy


pxxryy − 4 pxyrxy + pyyrxx


+ 4 pxxqxyryy


pxx + 4 qxy + ryy


− 4 pxyrxy


pxxryy + pyyrxx


+ 4 pxxrxx


q2yy − pyyqxy


+ 4 pyyryy


q2xx − qxyrxx


− 8 pxyqxy


qxxryy + qyyrxx


− 8 qxyrxy


pxxqyy + pyyqxx


where

K = pxxryy − 2 pxyrxy + pyyrxx + 2 (q2xy − qxxqyy)

is a relative differential invariant.

7.2. Singular set

Let Σ ′

2 ⊂ SDE2 be the set of points θ where ⟨X (2)
θ : X ∈ g⟩ ⊂ Tθ (SDE2) is of dimension less than 42. It is given by

Σ ′

2 = {θ ∈ SDE2 : rank (A|θ ) < 4}

where

A =



0 −2qxy − 2ryy pxy + qyy 0
0 2pxy − 2qyy 2pyy pyy

4qxy + ryy −rxx −2qxx −2qxx
−pxy + qyy qxx − rxy 0 −qxy

−pyy 2qxy − ryy qyy 0
−2qxx + 2rxy 0 −2rxx −3rxx
−2qxy + ryy rxx −rxy −2rxy

−2qyy 2rxy 0 −ryy


.

This set contains the singular points that can be seen from a local viewpoint on SDE2, but there may still be some singular
(non-closed) orbits of dimension 42. We use the differential invariants Ii to filter out these. Let Σ3 ⊂ SDE3 be the set of
points where the 4-form

d̂I1 ∧ d̂I2 ∧ d̂I3 ∧ d̂I4

is not defined or is zero. Here d̂ is the horizontal differential

d̂f = Dt(f )dt + Dx(f )dx + Dy(f )dy + Dz(f )dz.

This defines the singular sets Σk = (πk,3|SDEk)
−1(Σ3) ⊂ SDE k and Σ2 = π3,2(Σ3). The set Σ2 of all singular points in

SDE2 contains Σ ′

2.
By using Maple, we can easily verify that {K = K1 = K2 = K3 = K4 = 0} is contained in Σ ′

2, where Ki is the numerator
of Ii for i = 1, 2, 3, 4. Notice also that 2-jets of conformally flat metrics are contained in Σ ′

2.

7.3. Invariants of higher orders

The 1-forms d̂I1, d̂I2, d̂I3, d̂I4 determine an invariant horizontal coframe on SDE3 \ Σ3. The basis elements of the dual
frame ∂̂I1 , ∂̂I2 , ∂̂I3 , ∂̂I4 are invariant derivations, the Tresse derivatives. We can rewrite metric (1) in terms of the invariant
coframe:

g =


Gijd̂Iid̂Ij, where Gij = g(∂̂Ii , ∂̂Ij). (4)
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Since the d̂Ii are invariant, and [g] is invariant, the map

Ĝ = [G11 : G12 : G13 : G14 : G22 : G23 : G24 : G33 : G34 : G44] : J3 → RP9

is invariant. Hence the functions Gij/G44 are rational scalar differential invariants (of third order). This has been verified in
Maple by differentiation of Gij/G44 along the elements of g. It was also checked that these nine invariants are independent.
By the principle of n-invariants [4], Ii and Gij/G44 generate all scalar differential invariants.

Theorem 15. The field of rational differential invariants of g on SDE is generated by the differential invariants Ik,Gij/G44 and
invariant derivations ∂̂Ik . The differential invariants in this field separate generic orbits in SDE∞.

7.4. The quotient equation

When restricted to a section g0 ofCPR
M , the functionsGij can be considered as functions of I1, I2, I3, I4. Two such nonsingular

sections are equivalent if they determine the same map Ĝ(I1, I2, I3, I4).
The quotient equation (SDE∞ \ Σ∞)/g is given by

∗Wg = Wg , where g =


Gij(I1, I2, I3, I4)d̂Iid̂Ij.

Here we consider I1, . . . , I4 as coordinates on M . Equivalently, given local coordinates (x1, . . . , x4) on M the quotient
equation is obtained by adding to SDE the equations Ii = xi, 1 ≤ i ≤ 4.
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